
National Standard

for Financial Services

X9.96-2003

XML Cryptographic Message Syntax (XCMS)

Notice – This document is a draft document. It has not yet been processed through the consensus procedures of X9
and ANSI.

Many changes, which may greatly affect its contents, can occur before this document is completed. The X9F3
working group may not be held responsible for the contents of this document.

Implementation or design based on this revised draft standard is at the risk of the user. No advertisement or citation
implying compliance with a “Standard” should appear, as it is erroneous and misleading to so state.

Copies of this revised draft proposed American National Standard will be available from the X9 Secretariat when the
document is finally announced for two months public comment. Notice of this announcement will be in the trade
press.

Secretariat:
Accredited Standards Committee X9, Incorporated

Approved:
American National Standards Institute

X9.96 XML Cryptographic Message Syntax (XCMS)

Foreword

Approval of an American National Standard requires verification by ANSI that the requirements for due process,
consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement
has been reached by directly and materially affected interests. Substantial agreement means much more than a
simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered,
and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude
anyone, whether he has approved the standards or not from manufacturing, marketing, purchasing, or using
products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an
interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue
an interpretation of an American National Standard in the name of the American National Standards Institute.
Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title
page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of
the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard
no later than five years from the date of approval.

Published by

Accredited Standards Committee X9, Incorporated
Financial Industry Standards
P. O. Box 4035
Annapolis, MD 21403
http://www.x9.org/

Copyright  2002-3 by Accredited Standards Committee X9, Incorporated
All rights reserved.
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without
prior written permission of the publisher. Printed in the United States of America

Page 1 © 2002 ASC X9, Inc. – All rights reserved

http://www.x9.org/

X9.96 XML Cryptographic Message Syntax (XCMS)

Contents

Foreword ... 1
Introduction... 3
1 Scope.. 9
2 Normative references.. 9
3 Terms, definitions, symbols and abbreviated terms ... 11
4 Organization... 14
5 Application ... 14
6 Message Structures .. 15
6.1 Encapsulated Content... 15
6.2 Signed Data.. 18
6.2.1 Schema Definition ... 18
6.2.2 Signed Attributes... 22
6.2.3 Unsigned Attributes .. 33
6.2.4 Certificate Formats.. 35
6.2.5 Detached Signatures... 35
6.2.6 Signature Process ... 36
6.3 Authenticated Data.. 36
6.3.1 MAC and HMAC Creation... 38
6.3.2 MAC and HMAC Verification... 39
6.4 Digested Data... 39
6.5 Encrypted Data .. 40
6.6 Named Key Encrypted Data ... 42
6.7 Enveloped Data.. 42
6.7.1 General ... 42
6.7.2 Certificate Formats.. 45
7 Key Management ... 45
7.1 General ... 45
7.2 Asymmetric Key Transport... 45
7.3 Asymmetric Key Agreement .. 46
7.4 Pre-established Key Encryption Keys... 47
7.5 External Mechanisms – Constructive Key Management... 47
8 Conformance Classes... 47
Annex A (normative) XML CMS Object Identifiers ... 48
Annex B (normative) XML CMS Schema ... 53
Bibliography.. 62

Page 2 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

Introduction

NOTE: The user's attention is called to the possibility that compliance with this standard may require the use of
an invention covered by patent rights.

By publication of this standard, no position is taken with respect to the validity of this claim or of any patent rights
in connection therewith. The patent holder has, however, filed a statement of willingness to grant a license under
these rights on reasonable and non-discriminatory terms and conditions to applicants desiring to obtain such a
license. Details may be obtained from the standards developer.

Suggestions for the improvement or revision of this Standard are welcome. They should be sent to the X9
Committee Secretariat, American Bankers Association, 1120 Connecticut Avenue, N.W., Washington, D.C.
20036.

This Standard was processed and approved for submittal to ANSI by the Accredited Standards Committee on
Financial Services, X9. Committee approval of the Standard does not necessarily imply that all the committee
members voted for its approval.
Secretariat will provide current text for the following:

The X9 committee had the following members:
Gene Kathol, Chairman
Vincent DiSantis, Vice Chairman
Cynthia L. Fuller, Managing Director
Isabel Bailey, Program Manager

Organization Represented Representative

ACI Worldwide Cindy Rink
ACI Worldwide Jim Shaffer
American Bankers Association Don Rhodes
American Bankers Association Stephen Schutze
American Bankers Association Michael Scully
American Express Company Mike Jones
American Express Company Barbara Wakefield
American Financial Services Association John Freeman
American Financial Services Association Mark Zalewski
BancTec, Inc. Rosemary Butterfield
BancTec, Inc. Christopher Dowdell
BancTec, Inc. David Hunt
Bank of America Mack Hicks
Bank of America Richard Phillips
Bank of America Daniel Welch
Bank One Corporation Jacqueline Pagan
BB and T Michael Saviak
BB and T Woody Tyner
Cable & Wireless America Dr. William Hancock CISSP CISM
Cable & Wireless America Shannon Myers
Cable & Wireless America Kevin M. Nixon CISSP CISM

Page 3 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

Cable & Wireless America Jonathan Siegel
Citigroup, Inc. Dan Schutzer
Citigroup, Inc. Mark Scott
Citigroup, Inc. Skip Zehnder
Deluxe Corporation Maury Jansen
Diebold, Inc. Bruce Chapa
Diebold, Inc. Anne Doland
Diebold, Inc. Judy Edwards
Discover Financial Services Inc. Masood Mirza
eFunds Corporation Chuck Bram
eFunds Corporation Richard Fird
eFunds Corporation Daniel Rick
eFunds Corporation Joseph Stein
eFunds Corporation Cory Surges
Electronic Data Systems Linda Low
Federal Reserve Bank Jeannine M. DeLano
Federal Reserve Bank Dexter Holt
Federal Reserve Bank Laura Walker
First Data Corporation Gene Kathol
Fiserv Bud Beattie
Fiserv Kevin Finn
Fiserv Dan Otten
Hewlett Packard Larry Hines
Hewlett Packard Gary Lefkowitz
IBM Corporation Todd Arnold
Ingenico John Sheets
Ingenico John Spence
Inovant Richard Sweeney
KPMG LLP Tim Gartin
KPMG LLP Mark Lundin
KPMG LLP Jeff Stapleton
KPMG LLP Al Van Ranst, Jr.
Mag-Tek, Inc. Jeff Duncan
Mag-Tek, Inc. Mimi Hart
Mag-Tek, Inc. Carlos Morales
MasterCard International Caroline Dionisio
MasterCard International Naiyre Foster
MasterCard International Ron Karlin
MasterCard International William Poletti
Mellon Bank, N.A. Richard Adams
Mellon Bank, N.A. David Taddeo
National Association of Convenience Stores John Hervey
National Association of Convenience Stores Teri Richmond
National Association of Convenience Stores Robert Swanson
National Security Agency Sheila Brand
NCR Corporation David Norris
NCR Corporation Steve Stevens
Niteo Partners Charles Friedman
Niteo Partners Michael Versace
Silas Technologies Andrew Garner
Silas Technologies Ray Gatland
Star Systems, Inc. Elizabeth Lynn
Star Systems, Inc. Michael Wade
Symmetricom John Bernardi

Page 4 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

Symmetricom Sandra Lambert
Symmetricom Jerry Willett
The Clearing House Vincent DeSantis
The Clearing House John Dunn
Unisys Corporation David J. Concannon
Unisys Corporation Navnit Shah
VeriFone David Ezell
VeriFone Dave Faoro
VeriFone Allison Holland
VeriFone Brad McGuinness
VeriFone Brenda Watlington
VISA International Patricia Greenhalgh
Wells Fargo Bank Terry Leahy
Wells Fargo Bank Gordon Martin

The X9F subcommittee on Data and Information Security had the following members:

Richard Sweeney, Chair, Inovant

Organization Representative

3PEA Technologies, Inc. Mark Newcomer
3PEA Technologies, Inc. Daniel Spence
ACI Worldwide Cindy Rink
ACI Worldwide Jim Shaffer
American Bankers Association Don Rhodes
American Bankers Association Stephen Schutze
American Express Company William J. Gray
American Express Company Mike Jones
American Express Company Mark Merkow
American Financial Services Association John Freeman
American Financial Services Association Mark Zalewski
BancTec, Inc. Rosemary Butterfield
Bank of America Mack Hicks
Bank of America Todd Inskeep
Bank of America Richard Phillips
Bank of America Daniel Welch
Bank of America Craig Worstell
Bank One Corporation Jacqueline Pagan
BB and T Michael Saviak
BB and T Woody Tyner
Cable & Wireless America Dr. William Hancock CISSP CISM
Cable & Wireless America Shannon Myers
Cable & Wireless America Kevin M. Nixon CISSP CISM
Cable & Wireless America Jonathan Siegel
Certicom Corporation Daniel Brown
Communications Security Establishment Mike Chawrun
Communications Security Establishment Alan Poplove
Deluxe Corporation Maury Jansen
Diebold, Inc. Bruce Chapa
Diebold, Inc. Anne Doland
Diebold, Inc. Judy Edwards
Discover Financial Services Inc. Pamela Ellington
Discover Financial Services Inc. Masood Mirza

Page 5 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

Diversinet Corporation Michael Crerar
eFunds Corporation Chuck Bram
Electronic Industries Alliance Edward Mikoski
Electronic Industries Alliance Donald L. Skillman
Entrust Technologies Miles Smid
Federal Reserve Bank Neil Hersch
Ferris and Associates, Inc. J. Martin Ferris
First Data Corporation Gene Kathol
Fiserv Bud Beattie
Fiserv Dan Otten
Hewlett Packard Larry Hines
Hewlett Packard Gary Lefkowitz
IBM Corporation Todd Arnold
IBM Corporation Michael Kelly
IBM Corporation Allen Roginsky
Identrus Brandon Brown
Ingenico John Sheets
Ingenico John Spence
Inovant Richard Sweeney
International Biometric Group Mcken Mak CISSP
International Biometric Group Michael Thieme
Jones Futurex, Inc. Ray Bryan
Jones Futurex, Inc. Scott Davis
Jones Futurex, Inc. Barry Golden
Jones Futurex, Inc. Steve Junod
KPMG LLP Tim Gartin
KPMG LLP Mark Lundin
KPMG LLP Jeff Stapleton
KPMG LLP Al Van Ranst, Jr.
Mag-Tek, Inc. Terry Benson
Mag-Tek, Inc. Mimi Hart
MasterCard International Ron Karlin
MasterCard International William Poletti
Mellon Bank, N.A. David Taddeo
National Association of Convenience Stores John Hervey
National Association of Convenience Stores Teri Richmond
National Association of Convenience Stores Robert Swanson
National Security Agency Sheila Brand
NCR Corporation Wayne Doran
NCR Corporation Charlie Harrow
NCR Corporation David Norris
NCR Corporation Steve Stevens
Niteo Partners Charles Friedman
Niteo Partners Michael Versace
NIST Elaine Barker
NIST Lawrence Bassham III
NIST Morris Dworkin
NIST Annabelle Lee
NTRU Cryptosystems, Inc. Ari Singer
NTRU Cryptosystems, Inc. William Whyte
Pitney Bowes, Inc. Matthew Campagna
Pitney Bowes, Inc. Andrei Obrea
Pitney Bowes, Inc. Leon Pintsov
R Squared Academy Ltd. Richard E. Overfield Jr.

Page 6 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

R Squared Academy Ltd. Ralph Spencer Poore
RSA Securities Burt Kaliski
Star Systems, Inc. Elizabeth Lynn
Star Systems, Inc. Michael Wade
Surety, Inc. Dimitrios Andivahis
Symmetricom Sandra Lambert
TECSEC Incorporated Pud Reaver Y3YD
TECSEC Incorporated Ed Scheidt
TECSEC Incorporated Dr. Wai L. Tsang, Ph.D.
TECSEC Incorporated Jay Wack
Thales e-Security, Inc. Paul Meadowcroft
Thales e-Security, Inc. Brian Sullivan
Thales e-Security, Inc. James Torjussen
VeriFone. Dave Faoro
VeriFone Brad McGuinness
VISA International Patricia Greenhalgh
VISA International Richard Hite
Wells Fargo Bank Terry Leahy
Wells Fargo Bank Gordon Martin
Wells Fargo Bank Ruven Schwartz

Under ASC X9 procedures, a working group may be established to address specific segments of work under the
ASC X9 Committee or one of its subcommittees. A working group exists only to develop standard(s) or
guideline(s) in a specific area and is then disbanded. The individual experts are listed with their affiliated
organizations. However, this does not imply that the organization has approved the content of the standard or
guideline. (Note: Per X9 policy, company names of non-member participants are listed only if, at time of
publication, the X9 Secretariat received an original signed release permitting such company names to appear in
print.)

The X9F3 Working Group, which developed this standard had the following members:
C. L. Reaver, Chair
Phillip H. Griffin, Technical Editor
pecial thanks to Phil Griffin for his contributions to the text, ASN.1 and XML

Organization Representative

3PEA Technologies, Inc. Mark Newcomer
3PEA Technologies, Inc. Daniel Spence
American Express Company Mike Jones
Bank of America Andi Coleman
Bank of America Todd Inskeep
Cable & Wireless America Dr. William Hancock CISSP CISM
Cable & Wireless America Shannon Myers
Cable & Wireless America Kevin M. Nixon CISSP CISM
Cable & Wireless America Jonathan Siegel
Certicom Corporation Daniel Brown
Certicom Corporation John O. Goyo
Diebold, Inc. Bruce Chapa
Diebold, Inc. Anne Doland
Diebold, Inc. Judy Edwards
eFunds Corporation Chuck Bram

Page 7 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

Entrust Technologies Don Johnson
Entrust Technologies Miles Smid
Entrust Technologies Robert Zuccherato
Ernst and Young Keith Sollers
Federal Reserve Bank Neil Hersch
First Data Corporation Curt Beeson
First Data Corporation Lisa Curry
First Data Corporation Lynn Wheeler
Fiserv Dan Otten
Gilbarco Tim Weston
Hewlett Packard Larry Hines
IBM Corporation Todd Arnold
IBM Corporation Michael Kelly
Ingenico John Sheets
Ingenico John Spence
Inovant Richard Sweeney
Jones Futurex, Inc. Jason Anderson
Jones Futurex, Inc. Ray Bryan
Jones Futurex, Inc. Steve Junod
KPMG LLP Tim Gartin
KPMG LLP Jeff Stapleton
Mag-Tek, Inc. Terry Benson
MasterCard International William Poletti
National Security Agency Sheila Brand
National Security Agency Greg Gilbert
National Security Agency Tim Havighurst
National Security Agency Paul Timmel
NCR Corporation Steve Stevens
Niteo Partners Charles Friedman
Niteo Partners Michael Versace
NIST Elaine Barker
NTRU Cryptosystems, Inc. Ari Singer
NTRU Cryptosystems, Inc. William Whyte
PNC Bank, NA Tim Garland
Pulse EFT Association. Vivian M. Banki
Pulse EFT Association. Donald Rickett
R Squared Academy Ltd. Richard E. Overfield Jr.
R Squared Academy Ltd. Ralph Spencer Poore
Surety, Inc. Dimitrios Andivahis
Symmetricom Sandra Lambert
TECSEC Incorporated Pud Reaver Y3YD
TECSEC Incorporated Ed Scheidt
TECSEC Incorporated Dr. Wai L. Tsang
Thales e-Security, Inc. Tim Fox
Thales e-Security, Inc. Brian Sullivan
Thales e-Security, Inc. James Torjussen
VeriFone. Dave Faoro
VISA International Richard Hite

Page 8 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

XML Cryptographic Message Syntax
(XCMS)

1 Scope

This Standard specifies a text based Cryptographic Message Syntax (CMS) represented using XML 1.0 encoding
that can be used to protect financial transactions and other documents from unauthorized disclosure and
modification. The message syntax has the following characteristics:

1) Protected messages are represented using the Canonical XML Encoding Rules (cXER), and can be
transferred as verbose markup text or in a compact, efficient binary representation using the Basic Encoding
Rules (BER) or the canonical subset of BER, the Distinguished Encoding Rules (DER).

2) Messages are protected independently. There is no cryptographic sequencing (e.g., cipher block chaining)
between messages. There need not be any real-time connection between the sender and recipient of the
message. This makes the syntax suitable for use over store-and-forward systems, e.g. Automated Clearing
House (ACH) or Society for Worldwide International Funds Transfer (SWIFT). Standard attributes are defined
to allow applications to maintain relationships between messages, if desired.

3) The syntax is algorithm independent. It supports confidentiality, integrity, origin authentication, and non-
repudiation services. Only ANSI X9-approved algorithm(s) may be used for message digest, message
encryption, digital signature, message authentication, and key management.

4) Support for biometric security, enhanced certificate techniques such as compact domain certificates and key
management extensions such as Constructive Key Management (CKM) are provided.

5) Selective field protection can be provided in two ways. First by combining multiple instances of this syntax into
a composite message. And second by using identifier and type markup tag names to select message
components to be protected in a single message, which allows reusable message components to be moved
between documents without affecting the validity of the signature.

6) Precise message encoding and cryptographic processing requirements are provided.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. Nevertheless, parties to agreements based on this document are encouraged to
consider applying the most recent editions of the referenced documents indicated below. For undated references,
the latest edition of the referenced document (including any amendments and technical corrections) applies.

[1] ANS X9.19-1996 Financial Institution Retail Message Authentication (MAC)

[2] ANS X9.30-1997 Public Key Cryptography Using Irreversible Algorithms for the Financial Services
Industry, Part 1: The Digital Signature Algorithm (DSA)

Page 9 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

[3] ANS X9.30-1997 Public Key Cryptography Using Irreversible Algorithms for the Financial Services
Industry, Part 2: The Secure Hash Algorithm (SHA)[4] ANS X9.31-1998 Public Key Cryptography Using
Reversible Algorithms for the Financial Services Industry: The RSA Signature Algorithm

[4] ANS X9.31-1998 Public Key Cryptography Using Reversible Algorithms for the Financial Services
Industry: The RSA Signature Algorithm

[5] ANS X9.42-2001, Public Key Cryptography for the Financial Services Industry: Agreement of Symmetric
Keys Using Discrete Logarithm Cryptography.

[6] ANS X9.45-1997, Enhanced Management Controls Using Digital Signatures and Attribute Certificates.

[7] ANS X9.62-1999 Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm (ECDSA)

[8] ANS X9.63-2001, Public Key Cryptography for the Financial Services Industry: Key Agreement and Key
Transport Using Elliptic Curve Cryptography.

[9] ANS X9.68-2001, Digital Certificates for Mobile/Wireless and High Transaction Volume Financial
Systems: Part 2: Domain Certificate Syntax.

[10] ANS X9.69-1999, Framework for Key Management Extensions.

[11] ANS X9.71-1999 Keyed Hash Message Authentication Code (HMAC)

[12] ANS X9.73-2002, Cryptographic Message Syntax (CMS).

[13] ANS X9.84-2003, Biometric Information Management and Security.

[14] ISO/IEC ISO/IEC 8824-1 | ITU-T Recommendation X.680, Information Technology - Abstract Syntax
Notation One (ASN.1): Specification of Basic Notation.

[15] ISO/IEC 8824-2 | ITU-T Recommendation X.681, Information Technology - Abstract Syntax Notation One
(ASN.1): Information Object Specification.

[16] ISO/IEC 8824-3 | ITU-T Recommendation X.682, Information Technology - Abstract Syntax Notation One
(ASN.1): Constraint Specification.

[17] ISO/IEC 8824-4 | ITU-T Recommendation X.683, Information Technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 Specifications.

[18] ISO/IEC 8825-1 | ITU-T Recommendation X.690, Information Technology - ASN.1 Encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER).

[19] ISO/IEC 8825-4 | ITU-T Recommendation X.693, Information Technology - ASN.1 Encoding Rules:
Specification of XML Encoding Rules (XER).

[20] W3C XML 1.0:2000, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation,
Copyright © [6 October 2000] World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University),
http://www.w3.org/TR/2000/REC-xml-20001006.

Page 10 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

3 Terms, definitions, symbols and abbreviated terms

For the purposes of this document, the following terms and definitions apply.

3.1
Abstract Syntax Notation One
ASN.1
A notation that is used in describing messages to be exchanged between communicating application programs.
ASN.1 is used in this standard to describe the XML Cryptographic Message Syntax schema and transfer syntax
using the ASN.1 Distinguished Encoding Rules (DER) [12] and XML Encoding Rules (XER) [13].

3.2
asymmetric cryptographic algorithm
A cryptographic algorithm that has two related keys, a public key and a private key; the two keys have the
property that, given the public key, it is computationally infeasible to derive the private key.

3.3
certificate
digital certificate
The public key and identity of an entity, together with some other information, that is rendered unforgeable by
signing the certificate with the private key of the Certification Authority that issued the certificate.

3.4
Certificate Authority
CA
An entity trusted by one or more other entities to create and assign certificates.

3.5
certificate revocation list
CRL
A list of digital certificates that have been revoked for one reason or another – usually because of compromise.

3.6
constructive key management
CKM
A method of establishing a key, whereby several components of keying material, both symmetric and asymmetric
type of keys, where each component is used for a specific purpose, are combined together using a mathematical
function to produce an object key.

3.7
content encryption key
CEK
The symmetric key used to encrypt the content of a message.

3.8
cryptographic hash function
hash
A (mathematical) function that maps values from a large (possibly very large) domain into a smaller range. The
function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any input that maps to any pre-specified output;

2. (Collision Free) It is computationally infeasible to find any two distinct inputs that map to the same
output.

Page 11 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

3.9
cryptographic key
key
A parameter that determines, possibly with other parameters, the operation of a cryptographic function such as:

(a) the transformation from plaintext to ciphertext and vice versa;

(b) the synchronized generation of keying material;

(c) digital signature computation or validation.

3.10
cryptography
The discipline that embodies principles, means and methods for the transformation of data to hide its information
content, prevent its undetected modification, prevent its unauthorized use or a combination thereof.

3.11
domain parameters
The prime p that defines GF(p), a prime factor q of p-1, and an associated generator g of order q in the
multiplicative group GF(p)*. These parameters are used to facilitate the use of algorithms based on discrete
logarithm cryptography.

3.12
ephemeral key
A private or public key that is unique for each execution of a cryptographic scheme. An ephemeral private key is
to be destroyed as soon as computational need for it is complete. An ephemeral public key may or may not be
certified. In this standard, an ephemeral public key is represented by t, while an ephemeral private key is
represented by r, with a subscript to represent the owner of the key.

3.13
forward secrecy
perfect forward secrecy
The assurance provided to an entity that the session key established with another entity will not be compromised
by the compromise of either entity’s static private key in the future.

3.14
key agreement
A method of establishing a key, whereby both parties contribute to the value of the resulting key and neither party
can control the value of the resulting key.

3.15
key encryption key
A key used exclusively to encrypt and decrypt keys.

3.16
keying material
The data (e.g., keys, certificates and initialization vectors) necessary to establish and maintain cryptographic
keying relationships.

3.17
key management
The generation, storage, secure distribution and application of keying material in accordance with a security
policy.

Page 12 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

3.18
key pair
When used in public key cryptography, a public key and its corresponding private key.

3.19
key transport
A key establishment protocol under which the secret key is determined by the initiating party.

3.20
message authentication code
MAC
A cryptographic value that is the result of passing a message through the message authentication algorithm using
a specific key.

3.21
Multipurpose Internet Mail Extensions
MIME
The format for internet message bodies as defined in the IETF documents RFC 2045, RFC 2046, RFC 2047, RFC
2048 and RFC 2049.

3.22
nonce
A nonrepeating value, such as a counter, using key management protocols to thwart replay and other types of
attack.

3.23
object
That which is to be encrypted.1

3.24
object key
A key used to encrypt and decrypt an object.

3.25
private key
In an asymmetric (public) key cryptosystem, the key of an entity’s key pair that is known only by that entity. A
private key may be used:

(1) to compute the corresponding public key;

(2) to make a digital signature that may be verified by the corresponding public key;

(3) to decrypt data encrypted by the corresponding public key; or

(4) together with other information to compute a piece of common shared secret information.

3.26
public key
In an asymmetric (public) key cryptosystem, that key of an entity’s key pair that may be publicly known. A public
key may be used:

Page 13

1 When using CKM.

© 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

(1) to verify a digital signature that is signed by the corresponding private key;

(2) to encrypt data that may be decrypted by the corresponding private key;

(3) by other parties to compute a piece of shared information.

3.28
Secure MIME
S/MIME
The specification for handling MIME data securely by adding cryptographic security services to supply
authentication, message integrity, non-repudiation of origin, privacy and data security. The specification is found
in IETF documents RFC 2311 and 2312. See Multipurpose Internet Mail Extensions (MIME).

3.29
shared symmetric key
A symmetric key derived from a shared secret value and other information.

3.30
static key
A private or public key that is common to many executions of a cryptographic scheme. A static public key may be
certified. In this standard, the letter “y” represents a static public key, while a static private key is represented by
“x”, each with a subscript to represent the owner of the key. See definition of ephemeral key.

3.31
symmetric cryptographic algorithm
A cryptographic algorithm that uses one shared key, a secret key. The key must be kept secret between the two
communicating parties. The same key is used for both encryption and decryption.

3.32
symmetric key
A cryptographic key that is used in symmetric cryptographic algorithms. The same symmetric key that is used for
encryption is also used for decryption.

4 Organization

The following normative annexes are integral parts of the standard that, for reasons of convenience, are placed
after all normative elements.

Annex Contents Normative/Informative

A ASN.1 Module for Object Identifiers Normative

B X9.96 XCMS Schema Normative

5 Application

The XML cryptographic message syntax defined in this standard provides the same security services provided in
the ANS X9.73 [12] standard. This includes the following:

Page 14 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

1) Independent data unit protection, where each message or transaction is protected independently. There
is no need for a real-time communications session between the sender and recipient, and no
cryptographic sequencing (such as cipher block chaining) between messages. This standard does define
attributes that allow applications to maintain relationships between messages;

2) Confidentiality, using any ANSI X9 approved symmetric encryption algorithm and any ANSI X9 approved
key management algorithm. Typically, the key management algorithm is used to protect a content-
encryption key used to encrypt the message. This approach allows the sender to send an encrypted
message to multiple recipients, while only encrypting the actual message once. The syntax is optimized
for the common case where the same key management algorithm and parameters are used for all
recipients;

3) Data integrity origin authentication of data, using any ANSI X9 approved digital signature or message
authentication algorithm. (When using digital signatures, non-repudiation may also be supported.)
Support for multiple signers, per-signer authenticated attributes, unsigned attributes, and
countersignatures, are also provided. An optimized syntax is also provided for the common case where
only a single entity signs or authenticates a message.

Unlike ANS X9.73, this syntax allows for both the selective protection of specific fields within a message, or
protection of the entire message. Message protection of selected specific fields can also be implemented by
combining multiple protected messages into a composite message. In general, selective field protection requires
knowledge of the message, and this information must be included in a signed attribute.

This syntax specifies an XML [20] encoding of the enhanced cryptographic message syntax defined in ANS
X9.73. Additional attributes for use in financial applications, as well as cryptographic processing required for use
with ANSI X9 approved cryptographic algorithms and on XML markup plaintext messages are defined.

6 Message Structures

6.1 Encapsulated Content

The message structures in this standard are defined for transfer using XML markup or compact binary encodings.
The cryptographic message schema is defined using Abstract Syntax Notation One [14], [15], [16], [17], and the
XML markup specified in this standard conforms to the XML Encoding Rules (XER) [19] of ASN.1. The following
subsections describe the XML Cryptographic Message Syntax (XCMS) protected message types. A full
specification of the schema for the XML markup in this standard can be found in Annex B. This schema can also
be used to generate compact binary encodings using the Distinguished Encoding Rules (DER) [18] of ASN.1.

XCMS associates a content type identifier with a content type. The associated content type is wrapped in a value
of type OCTET STRING, an “octet hole”, which contains the complete encoding of a value of an ASN.1 type. The
content identifier and content type form a value of type EncapsulatedContentInfo defined as:

EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType,
 eContent [0] EXPLICIT
 CONTENTS.&Type({Contents}{@eContentType}) OPTIONAL
}

Type EncapsulatedContentInfo is composed of two components, eContentType and eContent. The
eContentType value is an object identifier, which indicates the type of content encapsulated in the eContent

Page 15 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

component. The eContent component is an octet hole containing content identified by the eContentType
component.

Type ContentType is defined in terms of the &id field of the CONTENTS information object set:

ContentType ::= CONTENTS.&id({Contents})

CONTENTS ::= TYPE-IDENTIFIER -- Defined in ISO/IEC 8824-2, Annex A

Content types for data, signed-data, enveloped-data, authenticated-data, digested-data, encrypted-data and
named-key-encrypted-data are defined in this standard. A value of ContentType is a unique object identifier
from the information object set Contents. The Contents information object set imposes a constraint on the valid
values of ContentType. This set of objects is defined as:

Contents CONTENTS ::= {
 { ESignedData IDENTIFIED BY id-signedData } |
 { EEnvelopedData IDENTIFIED BY id-envelopedData } |
 { EAuthenticatedData IDENTIFIED BY id-ct-authData } |
 { EDigestedData IDENTIFIED BY id-digestedData } |
 { EEncryptedData IDENTIFIED BY id-encryptedData } |
 { ENamedKeyEncryptedData IDENTIFIED BY id-namedkeyencryptedData } |
 { EData IDENTIFIED BY id-data },

 ... -- Expect additional objects --
}

Each object identifier in the Contents set is paired with an octet string that contains an ASN.1 type defined as:

ESignedData ::= OCTET STRING (CONTAINING SignedData)

EEnvelopedData ::= OCTET STRING (CONTAINING EnvelopedData)

EAuthenticatedData ::= OCTET STRING (CONTAINING AuthenticatedData)

EDigestedData ::= OCTET STRING (CONTAINING DigestedData)

EEncryptedData ::= OCTET STRING (CONTAINING EncryptedData)

ENamedKeyEncryptedData ::= OCTET STRING (CONTAINING NamedKeyEncryptedData)

EData ::= OCTET STRING (CONTAINING Data)

The following table illustrates the relation between the set of valid object identifiers and the encapsulated ASN.1
types that they identify:

Object Identifier Name Identified Type Name Encapsulated Type Name

 id-signedData SignedData EsignedData

 id-envelopedData EnvelopedData EenvelopedData

 id-ct-authData AuthenticatedData EauthenticatedData

 id-digestedData DigestedData EdigestedData

Page 16 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 id-encryptedData EncryptedData EencryptedData

 id-namedkeyencryptedData NamedKeyEncryptedData EnamedKeyEncryptedData

 id-data Data Edata

A value of type EncapsulatedContentInfo can be represented using XML markup as

<enCapContentInfo>
 <eContentType> 1.2.840.113549.1.7.2 </eContentType>
 <eContent>
 <SignedData>
 ...
 </SignedData>
 </eContent>
</enCapContentInfo>

Here the eContentType indicates that the complete encoding of a value of type SignedData is encapsulated in
the eContent component. In this example, an ellipsis is used as a placeholder for the SignedData components.

The object identifier values that identify the content types in this standard are defined below. All of the object
identifiers defined in this standard are based on an alias for values of type OBJECT IDENTIFIER, the defined
type OID2.

id-data ::= <OID> 1.2.840.113549.1.7.1 </OID>

id-signedData ::= <OID> 1.2.840.113549.1.7.2 </OID>

id-envelopedData ::= <OID> 1.2.840.113549.1.7.3 </OID>

id-digestedData ::= <OID> 1.2.840.113549.1.7.5 </OID>

id-encryptedData ::= <OID> 1.2.840.113549.1.7.6 </OID>

id-ct-authData ::= <OID> 1.2.840.113549.1.9.16.1.2 </OID>

id-namedkeyencryptedData ::= <OID> 1.2.840.10060.1.2 </OID>

The id-data content type identifies opaque information, such as ASCII text, word processing files, spreadsheets,
biometric information, or any other type of data whose structural details and interpretation are left to the
application. Applications may use context to determine the actual type of underlying data, or MIME processing
may be required to determine the actual content type.

The message types defined in this standard may be nested recursively to provide multiple security services. For
example, to provide confidentiality, authentication, and integrity, the sender would typically create an instance of
encrypted-data, and use it as the content for an instance of signed-data.

Page 17

2 The ASN.1 XML Value Notation is used in this standard where possible to demonstrate how values are encoded as XML
markup. The more verbose and familiar Basic Value Notation is used to specify the same values in the complete ASN.1
modules found in the normative annexes.

© 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

The following sections describe signed-data, enveloped-data, authenticated-data, digested-data and encrypted-
data.

6.2 Signed Data

6.2.1 Schema Definition

The SignedData type may consist of message content and one or more signatures and sets of certificates and
Certificate Revocation Lists (CRLs) that can be used in signature verification. The SignedData type may also
have no message content and no signers, and used in this manner as a mechanism to distribute certificates and
CRLs.

For each signer, a SignedData value may include the following:

 a set of certificates and a set of CRLs needed to verify the signer’s signature, and validate the signer’s
certificate.

 a set of attributes protected with the message content by the signer’s signature;

 the signer’s signature;

 a set of unsigned attributes.

The signed-data message provides origin authentication, data integrity, and (with appropriate additional measures
such as auditing and accurate time-stamping), non-repudiation.

The message recipient uses a certificate identifier in a signature block to locate the certificate(s) needed to verify
the signature.

The SignedData type is defined as:

SignedData ::= SEQUENCE {
 version Version,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] CertificateSet OPTIONAL,
 crls [1] CertificateRevocationLists OPTIONAL,
 signerInfos SignerInfos
}

The version component is an integer value that identifies the schema version number. Type Version is
defined as:

Version ::= INTEGER { vx9-96(96) } (vx9-96, ...)

The version for the schema in this standard is vx9-96. The extension marker, “…” allows any other version
identifier to be used in an application.

The digestAlgorithms component is a value of type DigestAlgorithmIdentifiers, a collection of zero or
more message digest algorithm identifiers. Each element in the collection identifies the message digest algorithm
and any associated parameters used by one or more signer. Only ANSI X9 approved cryptographic hash
algorithms are supported. Type DigestAlgorithmIdentifiers is defined as:

Page 18 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

DigestAlgorithmIdentifiers ::= SET SIZE(0..MAX) OF DigestAlgorithmIdentifier

DigestAlgorithmIdentifier ::= AlgorithmIdentifier {{ DigestAlgorithms }}

DigestAlgorithms ALGORITHM ::= {
 SHA-Algorithms,

 ... -- Expect other digest algorithms --
}
The encapContentInfo component is a value of type EncapsulatedContentInfo, which identifies and
optionally carries the signed content. The eContentType component of type EncapsulatedContentInfo is an
object identifier value that indicates the content type. When present, the optional eContent component contains
the message content. This component may be absent to allow construction of “detached signatures”, but when
the eContent value is absent, the signer calculates the signature on the message content as though the value
were present.

The certificates component is a value of type CertificateSet, a collection of one or more certificates.
This type is treated as an opaque string in this standard, and defined as:

CertificateSet ::= OCTET STRING

The certificates used in this standard are signed binary objects, whose digital signatures have been calculated
over values encoded using the Distinguished Encoding Rules (DER) of ASN.1 using the schema defined for these
types in ANS X9.73. In order to verify the signatures on these objects, their original encodings must be
maintained. But these values must also be represented in XML encodings in a useful textual format. So the
values in the certificates component of type CertificateSet have been Base64 armored to minimize their
size when represented using XML markup while preserving their original encodings. The input to the Base64
processing is defined in ANS X9.73 as a Basic Encoding Rules (BER) encoded value of type SET OF
CertificateChoices.

Any combination of ANS X9.68 [9] domain certificates, X.509 [24] certificates and attribute certificates may be
included in the CertificateSet type, and they may appear in any order. There may be more or fewer
certificates than needed for any purpose. Certificates are provided as needed to support key management
techniques used in this standard. Use of the CertificateSet type to distribute certificates is not required. They
may be obtained by other means, or an online certificate validation service may be used instead. Only version
one ANS X9.68 domain certificates, version three X.509 certificates and version two attribute certificates are
supported in this standard, to meet the needs of the financial services community as described in [22] and [23].

The crls component is a value of type CertificateRevocationLists, a collection of one or more CRLs.
This type is treated as an opaque string in this standard, and defined as:

CertificateRevocationLists ::= OCTET STRING

The CRLs used in this standard are signed binary objects, whose digital signatures have been calculated over
values encoded using the Distinguished Encoding Rules (DER) of ASN.1 using the schema defined for these
types in ANS X9.73. In order to verify the signatures on these objects, their original encodings must be
maintained. But these values must also be represented in XML encodings in a useful textual format. So the
values in the crls component of type CertificateRevocationLists have been Base64 armored to
minimize their size when represented using XML markup while preserving their original encodings. The input to
the Base64 processing is defined in ANS X9.73 as a Basic Encoding Rules (BER) encoded value of type SET OF
CertificateList. Any number of CRLs may be included in the CertificateRevocationLists type, and
they may appear in any order. There may be more or fewer CRLs than needed for any purpose. CRLs are
provided as needed to support certificate validation. Use of the CertificateRevocationLists type to

Page 19 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

distribute CRLs is not required. CRLs may be obtained by other means, or an online certificate validation service
may be used instead. Only version two certificate revocation lists are supported in this standard.

Signer Information

Information about individual signers is represented in type SignerInfo.

SignerInfos ::= SET OF SignerInfo

SignerInfo ::= SEQUENCE {
 version Version,
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs [0] SignedAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs [1] UnsignedAttributes OPTIONAL
}

The value of version is the schema version number. This value shall be ninety-six for this standard.

The sid component of SignerInfo identifies the signer’s certificate. This standard provides three alternatives
for identifying the signer’s public key – issuerAndSerialNumber, subjectKeyIdentifier, and certHash.

SignerIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier,
 certHash [73] EXPLICIT Hash
}

The issuerAndSerialNumber choice alternative of type SignerIdentifier identifies the signer’s X.509
certificate by the certificate’s issuer distinguished name and serial number. ANS X9.68 domain certificates are
uniquely identified by their owner names. They do not have an issuer-distinguished name and serial number, so
this choice alternative may not be used to identify ANS X9.68 certificates. Type IssuerAndSerialNumber is
defined as:

IssuerAndSerialNumber ::= SEQUENCE {
 issuer Name,
 serialNumber CertificateSerialNumber,
}

The subjectKeyIdentifier choice alternative of type SignerIdentifier identifies the signer’s certificate by
the X.509 or ANS X9.68 domain certificate subjectKeyIdentifier extension value.

SubjectKeyIdentifier ::= OCTET STRING

The certHash choice alternative of type SignerIdentifier can be used to identify any certificate format using
the hash of the entire certificate. This alternative is a value of type Hash defined as:

Hash ::= CHOICE {
 ietf CertHash, -- SHA-1 hash of entire certificate
 withAlgID DigestInfo
}

Page 20 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

CertHash ::= OCTET STRING (ENCODED BY sha-1)

DigestInfo ::= SEQUENCE {
 hashAlgorithm DigestAlgorithmIdentifier,
 digest OCTET STRING
}

Type Hash offers two choice alternatives. The ietf alternative requires a SHA-1 [3] hash, and the withAlGID
alternative allows any X9 approved hash algorithm to be used.

The digestAlgorithm component of type SignerInfo identifies the X9 approved message digest algorithm
used by the content signer, and any associated algorithm parameters.

The signedAttrs component of type SignerInfo is a collection of attributes that are signed along with the
message content. This component shall be present if the content type of the EncapsulatedContentInfo value
being signed is not ordinary data identified by id-data.

The signatureAlgorithm component of type SignerInfo identifies the X9 approved signature algorithm,
DSA [2], RSA [4], or ECDSA [7] and any associated parameters used by the content signer to generate the digital
signature.

SignatureAlgorithmIdentifier ::= AlgorithmIdentifier {{ SignatureAlgorithms }}

SignatureAlgorithms ALGORITHM ::= {
 { OID dsa-with-sha1 PARMS NullParms } |
 { OID ecdsa-with-SHA1 PARMS NullParms } |
 { OID sha1WithRSAEncryption PARMS NullParms },

 ... -- Expect other signature algorithms --
}
The signature component of type SignerInfo is the digital signature on the eContent value (and any signed
attributes) using the signer’s digestAlgorithm and private key.

SignatureValue ::= OCTET STRING

The unsignedAttrs component of type SignerInfo is a collection of attributes that are not signed.

A value of type SignedData can be encoded using XML markup as:

<SignedData>
 <version> 96 </version>
 <digestAlgorithms>
 <DigestAlgorithmIdentifier>
 <algorithm> 1.3.14.3.2.26 </algorithm>
 <parameters> <NullParms/> </parameters>
 </DigestAlgorithmIdentifier>
 </digestAlgorithms>
 <encapContentInfo>
 <eContentType> 1.2.840.113549.1.7.1 </eContentType>
 </encapContentInfo>
 <signerInfos>
 <SignerInfo>
 <version> 96 </version>

Page 21 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 <sid>
 <certHash>
 <withAlgID>
 <hashAlgorithm>
 <algorithm> 1.3.14.3.2.26 </algorithm>
 <parameters> <NullParms/> </parameters>
 </hashAlgorithm>
 <digest>
 E6E66A9245BCD6749F43C1A16D270BAF249B70CA
 </digest>
 </withAlgID>
 </certHash>
 </sid>
 <digestAlgorithm>
 <algorithm> 1.3.14.3.2.26 </algorithm>
 <parameters> <NullParms/> </parameters>
 </digestAlgorithm>
 <signatureAlgorithm>
 <algorithm> 1.2.840.10040.4.3 </algorithm>
 <parameters> <NullParms/> </parameters>
 </signatureAlgorithm>
 <signature>
 302C02144F9CA4507E2638AE9B632A3698A7AE84858F13
 3802140BD484312B36B090D2DF8B8A4719353F9A1EFAA5
 </signature>
 </SignerInfo>
 </signerInfos>
</SignedData>

Here the value in the <version> elements identifies this value of type SignedData as conforming to this
standard. The <digestAlgorithms> element shows a single digest algorithm is used, a SHA-1 hash. TBS

6.2.2 Signed Attributes

This section defines a number of useful signed attributes. Applications are free to define their own attributes as
well (see ANS X9.45 [6] for examples).

SignedAttributes ::= SET SIZE(1..MAX) OF SignedAttribute

SignedAttribute ::= Attribute {{Signed}}

Attribute { ATTRIBUTE:IOSet } ::= SEQUENCE {
 type ATTRIBUTE.&id({IOSet}),
 values SET OF ATTRIBUTE.&Type({IOSet}{@type})
}

Signed ATTRIBUTE ::= {
 { WITH SYNTAX ContentType ID id-contentType } |
 { WITH SYNTAX MessageDigest ID id-messageDigest } |
 { WITH SYNTAX SignaturePurposes ID id-signaturePurpose } |
 { WITH SYNTAX SigningTime ID id-signingTime } |
 { WITH SYNTAX SigningCertificate ID id-signingCertificate } |
 { WITH SYNTAX OtherSigningCertificate ID id-otherSigningCert } |
 { WITH SYNTAX BiometricSyntax ID id-biometricSyntax } |

Page 22 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 { WITH SYNTAX MsgSequenceNo ID id-msgSequenceNo } |
 { WITH SYNTAX Content ID id-contentIdentifier } |
 { WITH SYNTAX MessageComponents ID id-messageComponents },

 ... -- Expect additional objects --
}

6.2.2.1 Content Type

The content-type attribute identifies the type of content being signed. This attribute must be included in the
signature computation when the content being signed is not ordinary data, or when any signed attributes are
included in the message. This requirement allows malicious substitution of the contentType component of
EncapsulatedContentInfo to be detected by the message recipient.

The <type> element of a content-type attribute contains the object identifier value id-contentType, which
identifies one or more values of type ContentType. The id-contentType value is defined as:

id-contentType ::= <OID> 1.2.840.113549.1.9.3 </OID>

Type ContentType is defined in terms of the &id field of the CONTENTS information object set:

ContentType ::= CONTENTS.&id({Contents})

CONTENTS ::= TYPE-IDENTIFIER -- Defined in ISO/IEC 8824-2, Annex A

A value of ContentType is a unique object identifier from the information object set Contents. The Contents
information object set imposes a constraint on the valid values of ContentType. This set of objects is defined as:

Contents CONTENTS ::= {
 { ESignedData IDENTIFIED BY id-signedData } |
 { EEnvelopedData IDENTIFIED BY id-envelopedData } |
 { EAuthenticatedData IDENTIFIED BY id-ct-authData } |
 { EDigestedData IDENTIFIED BY id-digestedData } |
 { EEncryptedData IDENTIFIED BY id-encryptedData } |
 { ENamedKeyEncryptedData IDENTIFIED BY id-namedkeyencryptedData } |
 { EData IDENTIFIED BY id-data },
}

The valid values of type ContentType are the object identifiers id-signedData, id-envelopedData,
id-ct-authData, id-digestedData, id-encryptedData, id-namedkeyencryptedData, and id-data.

In a value of type SignerInfo, a signedAttrs component containing a content-type attribute can be encoded
using XML markup as:

<signedAttrs>
 <SignedAttribute>
 <type> 1.2.840.113549.1.9.3 </type>
 <values>
 <SET>
 <ContentType>
 1.2.840.113549.1.7.5
 </ContentType>
 </SET>

Page 23 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 </values>
 </SignedAttribute>
</signedAttrs>

Here the <signedAttrs> element contains a single attribute, a value of type SignedAttribute. The <type>
element of <SignedAttribute> contains an id-contentype value that indicates this attribute is a content-type
attribute. The <values> element contains a set of one value of type ContentType. The ContentType value in
this example identifies the content as DigestedData.

6.2.2.2 Message Digest

The message-digest attribute carries a hash of the message being signed so that the message is indirectly
included in the signature computation. This hash is a value of type MessageDigest. This attribute is required if
any other signed attributes are present.

The <type> element of a message-digest attribute contains the object identifier value id-messageDigest,
which identifies one or more values of type MessageDigest, an octet string. The id-messageDigest value is
defined as:

id-messageDigest ::= <OID> 1.2.840.113549.1.9.4 </OID>

Type MessageDigest is defined as:

MessageDigest ::= OCTET STRING

In a value of type SignerInfo, a signedAttrs component containing a message-digest attribute can be
encoded using XML markup as:

<signedAttrs>
 <SignedAttribute>
 <type> 1.2.840.113549.1.9.4 </type>
 <values>
 <SET>
 <MessageDigest>
 1DCA28DF401F13D5A49A17505DB229E401EE87C2
 </MessageDigest>
 </SET>
 </values>
 </SignedAttribute>
</signedAttrs>

Here the <signedAttrs> element contains a single attribute, a value of type SignedAttribute. The <type>
element of <SignedAttribute> contains an id-messageDigest value that indicates this attribute is a
message-digest attribute. The <values> element contains a set of one value of type MessageDigest.

6.2.2.3 Signature Purpose

The signature-purpose attribute may be used to indicate the reason a signature was applied. For example, the
attribute might indicate the signature is to attach a time-stamp, to provide a receipt, etc. It is a set of values of
type OBJECT IDENTIFIER, defined as type SignaturePurposes. ANS X9.45, Section 6.1.2 gives more
information.

Page 24 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

The <type> element of a signature-purpose attribute contains the object identifier value id-signaturPurpose,
which identifies one or more values of type SignaturePurposes. The id-signaturePurpose value is defined
as:

id-signaturePurpose ::= <OID> 1.2.840.10052.23 </OID>

Type SignaturePurposes is a series of zero or more values of type SignaturePurpose. This type is defined
as:

SignaturePurposes ::= SEQUENCE SIZE(0..MAX) OF SignaturePurpose

Type SignaturePurpose is defined in terms of the &id field of the PURPOSE information object set:

SignaturePurpose ::= PURPOSE.&id({SignerPurposes})

PURPOSE ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE
}
 WITH SYNTAX { SIGNER &id }

A value of this type is a unique object identifier from the information object set SignerPurposes, which imposes
a constraint on the valid values of type SignaturePurpose. The SignerPurposes information object set is
defined as:

SignerPurposes PURPOSE ::= {
 { SIGNER id-authorization } |
 { SIGNER id-cosignature } |
 { SIGNER id-witness } |
 { SIGNER id-receipt } |
 { SIGNER id-confirmation } |
 { SIGNER id-timestamp } |
 { SIGNER id-device } |
 { SIGNER id-registry } |
 { SIGNER id-integrity },

 ... -- Expect additional objects --
}

Each SignaturePurposes object is an object identifier defined as follows. These signature purposes are discussed
further in ANS X9.45.

id-authorization ::= <OID> 1.2.840.10052.1.23.1 </OID>
id-cosignature ::= <OID> 1.2.840.10052.1.23.2 </OID>
id-witness ::= <OID> 1.2.840.10052.1.23.3 </OID>
id-receipt ::= <OID> 1.2.840.10052.1.23.4 </OID>
id-confirmation ::= <OID> 1.2.840.10052.1.23.5 </OID>
id-timestamp ::= <OID> 1.2.840.10052.1.23.6 </OID>
id-device ::= <OID> 1.2.840.10052.1.23.7 </OID>
id-registry ::= <OID> 1.2.840.10052.1.23.8 </OID>
id-integrity ::= <OID> 1.2.840.10052.1.23.9 </OID>

In a value of type SignerInfo, a signedAttrs component containing a signature-purpose attribute can be
encoded using XML markup as:

Page 25 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

<signedAttrs>
 <SignedAttribute>
 <type> 1.2.840.10052.23 </type>
 <values>
 <SET>
 <SignaturePurposes>
 <SignaturePurpose>
 1.2.840.10052.1.23.9
 </SignaturePurpose>
 <SignaturePurpose>
 1.2.840.10052.1.23.4
 </SignaturePurpose>
 </SignaturePurposes>
 <SignaturePurposes>
 <SignaturePurpose>
 1.2.840.10052.1.23.6
 </SignaturePurpose>
 </SignaturePurposes>
 </SET>
 </values>
 </SignedAttribute>
</signedAttrs>

Here the <signedAttrs> element contains a single attribute, a value of type SignedAttribute. The <type>
element of <SignedAttribute> contains an id-signaturePurpose value that indicates this attribute is a
signature-purpose attribute. The <values> element in this example contains a set of two values of type
SignaturePurposes. Type SignaturePurposes is itself a series of one or more values of type
SignaturePurpose, a signature purpose object identifier.

The first set of signature purposes contains two <SignaturePurpose> elements, indicating integrity and receipt
purposes. The second set of signature purposes contains a single <SignaturePurpose> element. This element
indicates a signature purpose of time stamping.

6.2.2.4 Signing Time

The signing-time attribute type may be used to attach signed date and time information to a message, to indicate
that the message was created prior to that time. No requirement is imposed by this standard as to the correctness
of the signing time, and the acceptance of a purported signing time is a matter of a recipient's discretion. It is
expected, however, that some signers, such as time-stamp servers, will be trusted implicitly.

The <type> element of a signing-time attribute contains the object identifier value id-signingTime, which
identifies one or more values of type SigningTime. The id-signingTime value is defined as:

id-signingTime ::= <OID> 1.2.840.113549.1.9.5 </OID>

Type SigningTime is defined as:

SigningTime ::= CHOICE {
 utcTime UTCTime,
 generalizedTime GeneralizedTime
}

Page 26 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

In a value of type SignerInfo, a signedAttrs component containing a signing-time attribute can be encoded
using XML markup as:

<signedAttrs>
 <SignedAttribute>
 <type> 1.2.840.113549.1.9.5 </type>
 <values>
 <SET>
 <SigningTime>
 <generalizedTime>
 19801004000000Z
 </generalizedTime>
 </SigningTime>
 </SET>
 </values>
 </SignedAttribute>
</signedAttrs>

Here the <signedAttrs> element contains a single attribute, a value of type SignedAttribute. The <type>
element of <SignedAttribute> contains an id-signingTime value that indicates this attribute is a
signing-time attribute. The <values> element contains a set of one value of type SigningTime. The time string
in this example represents midnight, October 4, 1980.

6.2.2.5 Signing Certificate

The signing-certificate attribute may be used to indicate the certificate required to verify a signature, and the
policy under which the signature was applied. It has syntax:

The <type> element of a signing-certificate attribute contains the object identifier value
id-signingCertificate, which identifies one or more values of type SigningCertificate. The
id-signingCertificate value is defined as:

id-signingCertificate ::= <OID> 1.2.840.113549.1.9.16.2.12 </OID>

Type SigningCertificate is defined as:

SigningCertificate ::= SEQUENCE {
 certs ESSCertIDs,
 policies PolicyInfos OPTIONAL
}

ESSCertIDs ::= SEQUENCE OF ESSCertID

ESSCertID ::= SEQUENCE {
 certHash Hash,
 issuerSerial IssuerSerial OPTIONAL
}

Hash ::= CHOICE {
 ietf OCTET STRING,
 withAlgID DigestInfo
}

Page 27 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

In a value of type SignerInfo, a signedAttrs component containing a signing-certificate attribute can be
encoded using XML markup as:

<signedAttrs>
 <SignedAttribute>
 <type> 1.2.840.113549.1.9.16.2.12 </type>
 <values>
 <SET>
 <SigningCertificate>
 <certs>
 <ESSCertID>
 <certHash>
 <ietf>
 1DCA28DF401F13D5A49A17505DB229E401EE87C2
 </ietf>
 </certHash>
 </ESSCertID>
 </certs>
 </SigningCertificate>
 </SET>
 </values>
 </SignedAttribute>
</signedAttrs>

Here the <signedAttrs> element contains a single attribute, a value of type SignedAttribute. The <type>
element of <SignedAttribute> contains an id-signingCertificate value that indicates this attribute is a
signing-certificate attribute. The <values> element contains a set of one value of type SigningCertificate.

The <certs> element contains a single occurrence of the <ESSCertID> element, so that only a single signing
certificate is identified. The optional <policies> element is not present in the parent <SigningCertificate>
element. The presence of the <ietf> element indicates that the ietf choice alternative of type Hash is used to
identify the signing certificate using a SHA-1 digest of the entire DER encoding of the certificate.

6.2.2.6 Other Signing Certificate

The other-signing-certificate attribute has syntax OtherSigningCertificate, and allows the use of any ANSI
X9 approved cryptographic hash algorithm.

The <type> element of an other-signing-certificate attribute contains the object identifier value
id-otherSigningCert, which identifies one or more values of type OtherSigningCertificate. The
id-otherSigningCert value is defined as:

id-otherSigningCert ::= <OID> 0.4.0.1733.1.1.12 </OID>

Type OtherSigningCertificate is defined as:

OtherSigningCertificate ::= SEQUENCE {
 certs OtherCertIDs,
 policies PolicyInfos OPTIONAL
}

OtherCertIDs ::= SEQUENCE OF OtherCertID

Page 28 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

OtherCertID ::= SEQUENCE {
 certHash Hash,
 issuerSerial IssuerSerial OPTIONAL
}

In a value of type SignerInfo, a signedAttrs component containing an other-signing-certificate attribute can
be encoded using XML markup as:

<signedAttrs>
 <SignedAttribute>
 <type> 0.4.0.1733.1.1.12 </type>
 <values>
 <SET>
 <OtherSigningCertificate>
 <certs>
 <OtherCertID>
 <certHash>
 <ietf>
 3D5AF40149A175051DCA28DF1DB229E401C2EE87
 </ietf>
 </certHash>
 </OtherCertID>
 </certs>
 </OtherSigningCertificate>
 </SET>
 </values>
 </SignedAttribute>
</signedAttrs>

Here the <signedAttrs> element contains a single attribute, a value of type SignedAttribute. The <type>
element of <SignedAttribute> contains an id-otherSigningCert value that indicates this attribute is an
other-signing-certificate attribute. The <values> element contains a set of one value of type
OtherSigningCertificate.

The <certs> element contains a single occurrence of the <OtherCertID> element, so that only a single certificate
is identified. The optional <policies> element is not present in the parent <OtherSigningCertificate>
element. The presence of the <ietf> element indicates that the ietf choice alternative of type Hash is used to
identify the other signing certificate using a SHA-1 digest of the entire DER encoding of the certificate.

6.2.2.7 Biometric Object

The biometric-object attribute is used to convey biometric information. This attribute has syntax
BiometricSyntax, and is defined in ANS X9.84 [13]. The biometric data may already be signed or encrypted,
in which case the information may be conveyed as an unsigned attribute.

The <type> element of a biometric-object attribute contains the object identifier value id-biometricSyntax,
which identifies one or more values of type BiometricSyntax. The id-biometricSyntax value is defined as:

id-biometricSyntax ::= <OID> 1.2.840.10060.1.2 </OID>

In a value of type SignerInfo, a signedAttrs component containing a biometric-object attribute can be
encoded using XML markup as:

Page 29 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

<signedAttrs>
 <SignedAttribute>
 <type> 1.2.840.10060.1.2 </type>
 <values>
 <SET>
 <BiometricSyntax>
 ...
 </BiometricSyntax>
 </SET>
 </values>
 </SignedAttribute>
</signedAttrs>

Here the <signedAttrs> element contains a single attribute, a value of type SignedAttribute. The <type>
element of <SignedAttribute> contains an id-biometricSyntax value that indicates this attribute is a
biometric-object attribute. The <values> element contains a set of one value of type BiometricSyntax.

6.2.2.8 Sequence Number

The sequence-number attribute may be used by the application to maintain pair wise counters or sequence
numbers between two entities. This sequence number is a value of type MsgSequenceNo and is defined in this
standard as an integer greater than zero.

The <type> element of a sequence-number attribute contains the object identifier value id-msgSequenceNo,
which identifies one or more values of type MsgSequenceNo. The id-msgSequenceNo value is defined as:

id-msgSequenceNo ::= <OID> 1.2.840.10060.1.1 </OID>

Type MsgSequenceNo is defined as:

MsgSequenceNo ::= INTEGER (0..MAX)

In a value of type SignerInfo, a signedAttrs component containing a sequence-number attribute can be
encoded using XML markup as:

<signedAttrs>
 <SignedAttribute>
 <type> 1.2.840.10060.1.1 </type>
 <values>
 <SET>
 <Ms equenceNo> gS
 68
 </MsgSequenceNo>
 </SET>
 </values>
 </SignedAttribute>
</signedAttrs>

Here the <signedAttrs> element contains a single attribute, a value of type SignedAttribute. The <type>
element of <SignedAttribute> contains an id-msgSequenceNo value that indicates this attribute is a
sequence-number attribute. The <values> element contains a set of one value of type MsgSequenceNo.

Page 30 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

6.2.2.9 Content Identifier

The content-identifier attribute may be used by an application to attach a meaningful identifier to the message. A
standard means of message identification is not defined, and is left to the application. A nonce, a URI, a date and
time string, a string of descriptive text, or some other indication may be used.

The <type> element of a content-identifier attribute contains the object identifier value
id-contentIdentifier, which identifies one or more values of type Content. The id-contentIdentifier
value is defined as:

id-contentIdentifier ::= <OID> 1.2.840.113549.1.9.16.2.7 </OID>

Type Content is defined as:

Content ::= OCTET STRING

In a value of type SignerInfo, a signedAttrs component containing a content-identifier attribute can be
encoded using XML markup as:

<signedAttrs>
 <SignedAttribute>
 <type> 1.2.840.113549.1.9.16.2.7 </type>
 <values>
 <SET>
 <Co t> nten
 1066
 </Content>
 </SET>
 </values>
 </SignedAttribute>
</signedAttrs>

Here the <signedAttrs> element contains a single attribute, a value of type SignedAttribute. The <type>
element of <SignedAttribute> contains an id-contentIdentifier value that indicates this attribute is a
content-identifier attribute. The <values> element contains a set of one value of type Content.

6.2.2.10 Message Components

The message-components attribute carries a list of those parts of a message that are being signed. The message
can be any ASN.1 defined type. The list of message components may be in any order chosen by the signer. The
complete message from which the list of parts is derived is the value of the optional eContent component of type
EncapsulatedContentInfo.

 The <type> element of a message-components attribute contains the object identifier value defined in this
standard, id-messageComponents. The id-messageComponents value is defined as:

id-messageComponents ::= <OID> 1.3.133.16.840.9.96.1.1 </OID>

This OID identifies one or more values of type MessageComponents, a sequence of values of type Component,
which is defined as type UTF8String. Type MessageComponents is defined as:

MessageComponents ::= SEQUENCE SIZE(1..MAX) OF Component

Page 31 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

Component ::= UTF8String

Each value of type Component identifies one fully qualified element in an ASN.1 module. Each element is a
dotted string of characters of the form Module.Type[.index][.identifier], where

Module The name of an ASN.1 module. An ASN.1 module name appears as the
first symbol in the first line of the module. Within a given set of ASN.1
modules used in an encoding application, each module is required to have
a unique module identifier name. This allows references to defined types
having the same name but existing in more than one module to be uniquely
identified.

Type The name of any ASN.1 type defined in Module. The first symbol of an
assignment that defines a type or a parameterized type uniquely identifies
that type within a given ASN.1 module.

index An optional positive integer value indicating the specific instance of a type,
or the optional wildcard symbol “*” indicating all such instances, in a
SEQUENCE OF or SET OF type. The value “1” indicates the first instance of
the type. When the index is not present and the Type is a SEQUENCE OF
or SET OF type, the wildcard symbol is assumed.

identifier The optional unique name of a component of the ASN.1 type identified by
Module.Type.

Note that in the example:

P DEFINITIONS ::= BEGIN
 G ::= SEQUENCE {
 one INTEGER,
 too SET OF PrintableString
 }
END

“P” is a Module name, “G” is a Type name, and “one” and “too” are the “identifier” names of the two
components of type G. The notation “P.G.one” may be used in a value of type Component to indicate that the
complete encoding of a value of type INTEGER is to be signed. The notation “P.G.too.2” indicates the second
instance in a set of values of type PrintableString. The notations “P.G.too” and “P.G.too.*” both indicate
the entire set of values.

Using this example ASN.1 module P, and notation to indicate that all instances in the set of values of type
PrintableString are to be signed, a value of type SignerInfo, a signedAttrs component containing a
message-components attribute can be encoded using XML markup as:

<signedAttrs>
 <SignedAttribute>
 <type> 1.3.133.16.840.9.96.1.1 </type>
 <values>
 <SET>
 <MessageComponents>
 <Component> P.G.too </Component>
 </MessageComponents>
 </SET>

Page 32 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 </values>
 </SignedAttribute>
</signedAttrs>

Here the <signedAttrs> element contains a single attribute, a value of type SignedAttribute. The <type>
element of <SignedAttribute> contains an id-messageComponents value that indicates this attribute is a
message-components attribute. The <values> element of <SignedAttribute> contains a set of one value of
type MessageComponents, which indicates the list of message components to be signed, and which contains a
single value of type Component.

The notation <Component> P.G.too </Component> indicates that the complete encoding of a value of type
SET OF INTEGER, including the starting and ending XML markup tags <too> and </too>, are input to the
message digest phase of the digital signature process.

When more than one value of type Component is present in the list, the input to the message digest processing is
the concatenation, in the order presented in the list, of a series of complete encodings of the values indicated.
Though the content to be signed may be detached or included in the optional eContent component of type
EncapsulatedContentInfo, it is an error if a value of type Component indicates a value that is not present in
the content to be signed.

6.2.3 Unsigned Attributes

This section defines two useful attributes that are not signed. One of these, the biometric-object attribute, as an
option, may also appear in using applications as a signed attribute. Applications may define their own attributes
as well.

UnsignedAttributes ::= SET SIZE(1..MAX) OF UnsignedAttribute

UnsignedAttribute ::= Attribute {{Unsigned}}

Unsigned ATTRIBUTE ::= {
 { WITH SYNTAX Countersignature ID id-countersignature } |
 { WITH SYNTAX BiometricSyntax ID id-biometricSyntax },

 ... -- Expect additional objects --
}

6.2.3.1 Counter Signature

The countersignature attribute carries a signature computed over the signature component of the value of type
SignerInfo in which this countersignature appears as an attribute.

The <type> element of a content-type attribute contains the object identifier value id-countersignature,
which identifies one or more values of type Countersignature. The id-countersignature value is defined
as:

id-countersignature ::= <OID> 1.2.840.113549.1.9.6 </OID>

Type Countersignature is defined as:

Countersignature ::= SignerInfo

Page 33 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

Countersignatures can provide proof of the order of signature application. Countersignature values have the
same requirements as values of type SignerInfo in SignedData for ordinary signatures, except that:

 The signedAttrs component must contain a message-digest attribute if it contains any other attributes, but
need not contain a content-type attribute;

 The input to the message-digesting process is the value octets (not including the tag and link octets) of the
DER encoding of the signature component of the SignerInfo value with which the attribute is associated.

In a value of type SignerInfo, a signedAttrs component containing a message-digest attribute can be
encoded using XML markup as:

<unsignedAttrs>
 <UnsignedAttribute>
 <type> 1.2.840.113549.1.9.6 </type>
 <values>
 <SET>
 <Countersignature>
 <version> 96 </version>
 <sid>
 <certHash>
 <ietf>
 401F1E87C29E23D1DCA28D17F5A49A505DB2401E
 </ietf>
 </certHash>
 </sid>
 <digestAlgorithm>
 <algorithm> 1.3.14.3.2.26 </algorithm>
 <parameters> <NullParms/> </parameters>
 </digestAlgorithm>
 <signatureAlgorithm>
 <algorithm> 1.2.840.113549.1.1.5 </algorithm>
 <parameters> <NullParms/> </parameters>
 </signatureAlgorithm>
 <signature>
 A28D17F5A49A5 ... BAD21C712F854BA5
 </signature>
 </Countersignature>
 </SET>
 </values>
 </UnsignedAttribute>
</unsignedAttrs>

Here the <unsignedAttrs> element contains a single attribute, a value of type CounterSignature. The
<type> element of <UnsignedAttribute> contains an object identifier that indicates this attribute is a
countersignature attribute. The <values> element contains a set of one value of type CounterSignature.

6.2.3.2 Biometric Object

The biometric-object attribute is used to convey biometric information. This attribute has syntax
BiometricSyntax, and is defined in ANS X9.84. The biometric data may already be signed or encrypted, in
which case the information may be conveyed as an unsigned attribute.

Page 34 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

id-biometricSyntax ::= <OID> 1.2.840.10060.1.2 </OID>

In a value of type SignerInfo, a signedAttrs component containing a biometric-object attribute can be
encoded using XML markup as:

<unsignedAttrs>
 <UnsignedAttribute>
 <type> 1.2.840.113549.1.9.4 </type>
 <values>
 <SET>
 <BiometricObject>
 <biometricHeader>
 <version> 0 </version>
 <recordType> <id> 5 </id> </recordType>
 <dataType> <processed/> </dataType>
 <purpose> <audit/> </purpose>
 <quality> -1 </quality>
 <validityPeriod>
 <notBefore> 1986.7.13 </notBefore>
 <notAfter> 2003.7.12.23.59.59 </notAfter>
 </validityPeriod>
 <format>
 <formatOwner>
 <oid> 2.23.42.9.10.4.2.2 </oid>
 </formatOwner>
 </format>
 </biometricHeader>
 <biometricData> A239C ... DE0B2C1D </biometricData>
 </BiometricObject>
 </SET>
 </values>
 </UnsignedAttribute>
</unsignedAttrs>

Here the <signedAttrs> element contains a single attribute, a value of type SignedAttribute. The <type>
element contains an object identifier that indicates this attribute is a biometric-object attribute. The <values>
element contains a set of one value of type BiometricObject.

6.2.4 Certificate Formats

This standard supports all of the certificate formats defined ANS X9.73, including X.509 version three certificates,
version two attribute certificates, and the compact domain certificate format defined in ANS X9.68.

6.2.5 Detached Signatures

Detached signatures are signatures that are conveyed separately from the content in an
EncapsulatedContentInfo value. As with the other data types defined here, the content, i.e. the eContent
component of the EncapsulatedContentInfo type, is optional. This allows the content to be conveyed
separately, with the application maintaining the connection between the content and the signature(s).

For example, applications can convey the content as one MIME body part, and the signature(s) as another. This
allows a recipient to process the content while ignoring the signature body part if the application is not capable of
signature verification.

Page 35 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

6.2.6 Signature Process

A message digest is used to create the digital signature carried in the signature component of the
SignerInfo component of type SignedData. The message digest is calculated using the algorithm and
parameters components of a value of type DigestAlgorithmIdentifier indicated by the
digestAlgorithm component of SignerInfo, the value of the eContent component of type
EncapsulatedContentInfo, and any attributes in the signedAttrs component of SignerInfo. The
eContentType component of EncapsulatedContentInfo identifies the type of message content being signed.

When a value of type SignedData is represented as XML markup, the starting and ending eContent tags are
excluded from the message digest process. Only the "value" portion of the complete canonical XER encoding of
eContent is digested. This can be any sort of data whatsoever, including the Base64 armored contents of a word
processing file, fragments of an XML document, or an XML schema. The <eContent> and </eContent> tags
of a value of type EncapsulatedContentInfo are excluded from the message digest process.

6.2.6.1 Ordinary Data

When the content type is ordinary data and there are no attributes to be signed, the value of the eContent
component of EncapsulatedContentInfo is digested. The result of the message digest process is then
digitally signed using the signer’s private key and the signature algorithm and parameters specified in the
signatureAlgorithm component of type SignerInfo. The result of the signature process becomes the value
of the signature component of the SignerInfo component of type SignedData.

6.2.6.2 Authenticated Attributes

When the content type is not ordinary data or when there are any attributes to be signed, the message digest
must be computed on the content being signed together with the authenticated attributes. The initial input to the
message digest process is the value of the eContent component of EncapsulatedContentInfo. Only the
value of the eContent component is digested, and the <eContent> and </eContent> tags of a value of type
EncapsulatedContentInfo are excluded from the message digest process.

When the optional signedAttrs component of type SignedData is present, … TBS

6.3 Authenticated Data

The authenticated-data message consists of message content and an ANSI X9 approved symmetric key
authentication code [1], along with key management information used to convey the verification key to the
recipients. Data integrity is provided by use of this type. Origin authentication may also be provided when an
appropriate key management technique such as key agreement is used by the message originator.

AuthenticatedData ::= SEQUENCE {
 version Version,
 originatorInfo [0] OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 macAlgorithm MACAlgorithmIdentifier,
 digestAlgorithm [1] DigestAlgorithmIdentifier OPTIONAL,
 encapContentInfo EncapsulatedContentInfo,
 authenticatedAttributes [2] AuthAttributes OPTIONAL,
 mac MessageAuthenticationCode,
 unauthenticatedAttributes [3] UnauthAttributes OPTIONAL
}

Page 36 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

The value of version is the schema version number. This value shall be ninety-six for this standard.

The originatorInfo component provides public key certificate and certificate revocation information about the
message originator. It is present only if required by the key management method. It may contain certificates and
CRLs that have been. Base64 armored to minimize their size when represented using XML markup, while
preserving their original ASN.1 BER encodings. The Base64 processing of these values is fully described in
section 6.2.1. The constraints on values of type OriginatorInfo specified in Section 6.7.2 Certificate Formats,
also apply to the use of AuthenticatedData with domain certificates.

The recipientInfos component contains a list of per-recipient information. There shall be at least one element
in the list of values of type RecipientInfo. All constraints on RecipientInfo defined in Section 6.7.2,
Certificate Formats, also apply to the use of AuthenticatedData with domain certificates.

The macAlgorithm component identifies an X9 approved message authentication code algorithm (a MAC or an
HMAC [11] algorithm) used by the message sender, and any associated algorithm parameters. The type of the
values in this component is MACAlgorithmIdentifier, which is defined as:

MACAlgorithmIdentifier::= AlgorithmIdentifier {{MACAlgorithms}}

MACAlgorithms ALGORITHM ::= {
 { OID hmac-with-SHA1 },

 ... -- expect other MAC or HMAC algorithms --
}

The digestAlgorithm component identifies an X9 approved message digest algorithm used by the message
sender, and any associated algorithm parameters. This component is optional, but must be present when there
are any authenticated attributes. X9 approved digest algorithms are fully specified in section 6.2.1.

The encapContentInfo component is a value of type EncapsulatedContentInfo, which is defined in section
6.1, identifies and optionally carries the authenticated message content. The eContentType component of type
EncapsulatedContentInfo is an object identifier value that indicates the content type. When present, the
optional eContent component of type EncapsulatedContentInfo contains the message content. This
component may be absent to allow construction of “detached authentication codes”, but when the eContent
value is absent, the message sender calculates the authentication code on the message content as though the
value were present.

The authenticatedAttributes component is a collection of attributes that are authenticated along with the
message content. Some useful authenticated attributes are defined in section 6.2.2.

The mac component contains the results of calculating a message authentication code on the message content,
and is defined as:

MessageAuthenticationCode ::= OCTET STRING

The unauthenticatedAttributes component is a collection of attributes that are not authenticated along with
the message content. Some useful attributes that are not authenticated are defined in section 6.2.3.

The AuthenticatedData cryptographic content type is indicated by the object identifier value:

id-ct-authData ::= <OID> 1.2.840.113549.1.9.16.1.2 </OID>

Page 37 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

A value of type AuthenticatedData can be encoded using XML markup as:

<AuthenticatedData>
 <version> 96 </version>
 <recipientInfos>
 <RecipientInfo>
 <ktri>
 <version> 96 </version>
 <rid>
 <rKeyId>
 <subjectKeyIdentifier>
 1DC17505DB229E401EE87C2A28DF401F13D5A49A
 </subjectKeyIdentifier>
 </rKeyId>
 </rid>
 <keyEncryptionAlgorithm>
 <algorithm> 1.2.840.113549.1.1.1 </algorithm>
 <parameters> </NullParms> </parameters>
 </keyEncryptionAlgorithm>
 <encryptedKey>
 229E402819B301DD9127488201F3A16C24BF7CCA482B
 </encryptedKey>
 </ktri>
 </RecipentInfo>
 </recipentInfos>
 <macAlgorithm>
 <algorithm> 1.3.6.1.5.5.8.1.2 </algorithm>
 </macAlgorithm>
 <encapContentInfo>
 <eContentType> 1.2.840.113549.1.7.1 </eContentType>
 </encapContentInfo>
 <mac>
 1DC17505DB229E401EE87C2A28DF401F13D5A49A17505DB229E401EE87C2
 </mac>
</AuthenticatedData >

Here the value in the <version> element identifies this value of type AuthenticatedData as conforming to
this standard. The <recipientInfos> element contains only one element, indicating that there is only one
recipient of the information. The <ktri> element identifies the key transport key management technique being used
for this message recipient, and the <algorithm> element indicates that the key encryption algorithm used to
encrypt the symmetric key for transport is rsaEncryption. The <macAlgorithm> element indicates that an
HMAC algorithm was used to create the value in the <mac> element. The <eContentType> element identifies
the MACed content as ordinary data.

6.3.1 MAC and HMAC Creation

A message authentication code (MAC or HMAC [11]) may be calculated on a message content value of any type,
or calculated on a digest of the message content together with a collection of one or more authenticated
attributes. The calculation process uses the X9 approved authentication code algorithm, and any associated
algorithm parameters, indicated in the macAlgorithm component of type AuthenticatedData. The process also
uses the message content, together with any optional authenticated attributes, and the authentication key
conveyed in a value of type RecipientInfo for the message recipient. This key may be prearranged, or chosen at
random, but shall be generated in accordance to the requirements of the X9 approved algorithm being used.

Page 38 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

The result of this calculation becomes the message authentication code in the mac component of type
AuthenticatedData. If the optional authenticatedAttributes component of type AuthenticatedData is not
present, just the value of the eContent component of the encapContentInfo component of type
AuthenticatedData is input to the message authentication code calculation process. The <eContent> and
</eContent> elements are not included in the input.3

If the optional authenticatedAttributes component is present in a value of type AuthenticatedData, then the
authenticated attributes are the input to the message authentication code calculation process, and both the
contentType and messageDigest attributes defined in section 6.2 must be included in the input. The
contentType attribute shall indicate the type of message content being authenticated. The messageDigest
attribute shall include a message digest of that content. The <authenticatedAttributes> and
</authenticatedAttributes> elements that encapsulate the collection of authenticated attributes shall also
be included in the input to the calculation process.

The value of the authenticatedAttributes component must be encoded using the canonical variant (cXER) of the
XML Encoding Rules (XER), even though the rest of the cryptographic message may be encoded using basic
XER. The authenticatedAttributes component shall be present when the content is not ordinary data identified
by id-data. When any authenticated attributes are present, the optional digestAlgorithm component of type
AuthenticatedData shall also be present to indicate the digest algorithm used to create the messageDigest
attribute. The input to the message digest process shall be the value of the eContent component of the
encapContentInfo component of type AuthenticatedData. The <eContent> and </eContent> elements are not
included in the input.

6.3.2 MAC and HMAC Verification

To verify a message authentication code in the mac component of a value of type AuthenticatedData, a MAC
or HMAC is computed using the same key used by the sender, the key carried in the RecipientInfo value for the
message recipient. If there are no authenticated attributes present, a message authentication code is calculated
on the message content, the value in the <eContent> element. The resulting value is compared to the value of
the mac component of type AuthenticatedData. If they are identical, the value in the mac component is valid.

If authenticated attributes are present, a digest is computed on the message content, the value in the
<eContent> element. For the message digest process to succeed, this resulting value must be equivalent to the
value sent by the message originator in the messageDigest attribute. Next, a message authentication code is
calculated on the authenticated attributes. The resulting value is compared to the value of the mac component of
type AuthenticatedData. If they are identical, the value in the mac component is valid.

6.4 Digested Data

A digested-data message consists of a message content identifier and a cryptographic hash of the identified
content. The message content may also be present. Frequently, this message type is used as a building block for
the creation of other messages, and the message content typically will be absent in the digested-data message,
since this content can be carried elsewhere in the overall message.

Page 39

3 This processing requirement matches the requirement specified for use with binary encodings of eContent in both ANS
X9.73 and ANS X9.84. In these standards, the tag and length octets of eContent are excluded from the MAC and HMAC
calculation process, so that the length of the content being authenticated need not be known when the process is initiated.
While not necessary for XML markup, which is always indefinite length encoded, this requirement allows a single programming
solution to be used to implement ANS X9.73, ANS X9.84, and this standard.

© 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

DigestedData ::= SEQUENCE {
 version Version,
 digestAlgorithm DigestAlgorithmIdentifier,
 encapContentInfo EncapsulatedContentInfo,
 digest Digest
}

The value of version is the schema version number. This value shall be ninety-six for this standard.

The digestAlgorithm component identifies an X9 approved message digest algorithm used by the message
sender, and any associated algorithm parameters.

The encapContentInfo component is a value of type EncapsulatedContentInfo, which is defined in section
6.1.

The digest component is a value of type Digest. This value contains the result of applying the hash function
indicated by the digestAlgorithm component to the message content. Type Digest is defined as:

Digest ::= OCTET STRING

The DigestedData cryptographic content type is indicated by the object identifier value:

id-digestedData ::= <OID> 1.2.840.113549.1.7.5 </OID>

A value of type DigestedData can be encoded using XML markup as:

<DigestedData>
 <version> 96 </version>
 <digestAlgorithm>
 <algorithm> 2.16.840.1.101.3.4.2.1 </algorithm>
 </digestAlgorithm>
 <encapContentInfo>
 <eContentType> 1.2.840.113549.1.7.1 </eContentType>
 </encapContentInfo>
 <digest>
 1DC17505DB229E401EE87C2A28DF401F13D5A49A17505DB229E401EE87C2
 </digest>
</DigestedData>

Here the value in the <version> element identifies this value of type DigestedData as conforming to this
standard. The <digestAlgorithm> element indicates that the digest algorithm used to create the value in the
<digest> element is a two hundred and fifty-six bit FIPS 180-2 Secure Hash Algorithm. The <eContentType>
element identifies the digested content as ordinary data.

6.5 Encrypted Data

An encrypted-data message consists of encrypted message content without any associated key management
information. It is typically used as a building block in other messages, or for local protected data storage.

EncryptedData ::= SEQUENCE {
 version Version,
 encryptedContentInfo EncryptedContentInfo
}

Page 40 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

The value of version is the schema version number. This value shall be ninety-six for this standard.

The encryptedContentInfo component is a value of type EncryptedContentInfo defined as:

EncryptedContentInfo ::= SEQUENCE {
 contentType ContentType,
 contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
 encryptedContent [0] EncryptedContent OPTIONAL
}

The type of encrypted content is indicated by an object identifier value in the contentType component.

The contentEncryptionAlgorithm component identifies content encryption algorithm and any associated
algorithm parameters used to encrypt the message content.

The encryptedContent component contains the result of encrypting the content identified by the contentType
component using the algorithm and parameters identified in the contentEncryptionAlgorithm component.

The EncryptedData cryptographic content type is indicated by the object identifier value:

id-encryptedData ::= <OID> 1.2.840.113549.1.7.6 </OID>

Examples of encrypted-data use in financial services include POS transactions, ATM transactions and encrypted
PINs, where the content encryption key is communicated by other means, perhaps by wrapping this message
within a signed-data message that includes a key identification attribute.

A value of type EncryptedData can be encoded using XML markup as:

<EncryptedData>
 <version> 96 </version>
 <encryptedContentInfo>
 <contentType> 1.2.840.113549.1.7.5 </contentType>
 <contentEncryptionAlgorithm>
 <algorithm> 1.2.840.113549.3.7 </algorithm>
 <parameters>
 <IV> 14FEA1DE6E3BC59C </IV>
 </parameters>
 </contentEncryptionAlgorithm>
 <encryptedContent>
 4A915A2D ... EAF8732B
 </encryptedContent>
 </encryptedContentInfo>
</EncryptedData>

Here the value in the <version> element identifies this value of type EncryptedData as conforming to this
standard. The <contentType> element identifies the encrypted content as digested-data, a nested
cryptographic type defined in this standard. The <contentEncryptionAlgorithm> identifies the Triple DES
algorithm and its associated parameters, and initialization vector, <IV>.

Page 41 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

6.6 Named Key Encrypted Data

A named-key-encrypted-data message consists of content encrypted with a single key and a key name. The
name of the key is given in the keyName component of type NamedKeyEncryptedData. The encrypted content
is carried in the encryptedData component, a value of type EncryptedData. Type NamedKeyEncryptedData
is defined as:

NamedKeyEncryptedData ::= SEQUENCE {
 keyName OCTET STRING (SIZE (1..MAX)),
 encryptedData EncryptedData
 }

The NamedKeyEncryptedData cryptographic content type is indicated by the object identifier value:

id-namedkeyencryptedData ::= <OID> 1.2.840.10060.1.2 </OID>

Examples of named-key-encrypted-data use in financial services include POS transactions, ATM transactions and
encrypted PINs, where the name of the key may be used to identify a particular device.

A value of type NamedKeyEncryptedData can be encoded using XML markup as:

<NamedKeyEncryptedData>
 <keyName> A6EF73B45ADEA73D1E </keyName>
 <encryptedData>
 <version> 96 </version>
 <encryptedContentInfo>
 <contentType> 1.2.840.113549.1.7.6 </contentType>
 <contentEncryptionAlgorithm>
 <algorithm> 1.2.840.113549.3.7 </algorithm>
 <parameters>
 <IV> 14FEA1DE6E3BC59C </IV>
 </parameters>
 </contentEncryptionAlgorithm>
 <en ntencryptedCo t>
 4A915A2D ... EAF8732B
 </encryptedContent>
 </encryptedContentInfo>
 </encryptedData>
</NamedKeyEncryptedData>

Here the value in the <version> element identifies this value of type NamedKeyEncryptedData as conforming
to this standard. The <keyName> element contains the name of the key used to encrypt the value in the
<encryptedContent> element, and the <contentType> element identifies the encrypted content as ordinary
data. The <contentEncryptionAlgorithm> identifies the Triple DES algorithm and its associated
parameters, and initialization vector, <IV>.

6.7 Enveloped Data

6.7.1 General

The enveloped-data message consists of an encrypted message content, along with key management
information for each recipient. The content is encrypted under a symmetric content-encryption key (CEK). The

Page 42 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

CEK is, in turn, encrypted under each recipient’s public key or a shared symmetric key, and included in the key
management information. Any type of content can be enveloped for any number of recipients.

The typical application of the enveloped-data content type will represent one or more recipients' digital envelopes
on the content of the data or signed-data content types.

A recipient opens the envelope by decrypting one of the encrypted CEK and decrypting the encrypted message
content with the recovered CEK.

The following object identifier identifies the enveloped-data content type:

id-envelopedData ::= <OID> 1.2.840.113549.1.7.3 </OID>

Type EnvelopedData is defined as:

EnvelopedData ::= SEQUENCE {
 version Version,
 originatorInfo [0] OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 encryptedContentInfo EncryptedContentInfo,
 unprotectedAttrs [1] UnprotectedAttributes OPTIONAL
}

The value of version is the schema version number. This value shall be ninety-six for this standard.

The originatorInfo component provides information about the originator. It is present only if required by the
key management method. It may contain certificates and CRLs that have been Base64 armored to minimize their
size when represented using XML markup, while preserving their original ASN.1 BER encodings. The Base64
processing of these values is fully described in section 6.2.1.

OriginatorInfo ::= SEQUENCE {
 certs [0] CertificateSet OPTIONAL,
 crls [1] CertificateRevocationLists OPTIONAL
}

certs is an optional collection of one or more certificates.

crls is an optional collection of one or more certificate revocation lists.

recipientInfos is a collection of per-recipient information. There shall be at least one element in the
collection.

RecipientInfos ::= SET SIZE(1..MAX) OF RecipientInfo

RecipientInfo ::= CHOICE {
 ktri KeyTransRecipientInfo,
 kari [1] KeyAgreeRecipientInfo,
 kekri [2] KEKRecipientInfo,
 -- Choice [3] reserved for IETF password-based encryption mechanism
 ori [4] ExtendedKeyMgmtRecipientInfo
}

Four key management techniques are supported in the choice alternatives of type RecipientInfo:

Page 43 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

1) ktri - key transport: the content-encryption key is encrypted in the recipient's public key;

2) kari - key agreement: the recipient's public key and the sender's private key are used to generate a
pair wise symmetric key, then the content-encryption key is encrypted in the pair wise symmetric key;

3) kekri - pre-established key encrypted keys: the content-encryption key is encrypted in a previously
distributed symmetric key; and

4) ori - external mechanisms: this allows the use of additional key management mechanisms. In this
standard, constructive key management, as defined in ANS X9.69 [10], is implemented as an external
mechanism.

The RecipientInfo construct is extended in this standard to support these mechanisms.

Section 7, Key Management, discusses key management using ANSI X9 approved algorithms in detail.

encryptedContentInfo is the encrypted contents.

EncryptedContentInfo ::= SEQUENCE {
 contentType ContentType,
 contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
 encryptedContent [0] EncryptedContent OPTIONAL
}

The contentType indicates the type of content.

The contentEncryptionAlgorithm identifies the X9 approved content encryption algorithm [??], and any
associated parameters, used to encrypt the content. The same content-encryption algorithm and content-
encryption key is used for all recipients.

ContentEncryptionAlgorithmIdentifier ::=
 AlgorithmIdentifier {{ContentEncryptionAlgorithms}}

ContentEncryptionAlgorithms ALGORITHM ::= {
 { OID des-ede3-cbc PARMS IV },

 ... -- Expect other content encryption algorithms --
}
The encryptedContent is the result of encrypting the content. This component is optional and if not present in
the message must be provided by other means. When the encrypted content is not present, it is the responsibility
of the communicating applications to associate the encrypted content with the encryption key.

EncryptedContent ::= OCTET STRING

The unprotectedAttrs component of type EnvelopedData is a collection of attributes that are not protected
by encryption.

UnprotectedAttributes ::= SET SIZE(1..MAX) OF Attribute {{ Unprotected }}

Unprotected ATTRIBUTE ::= { ... -- Expect additional objects -- }

Page 44 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

6.7.2 Certificate Formats

As discussed in Section 6.2.4, Certificate Formats, this standard supports the use of domain certificates as
defined in ANS X9.68. This is reflected in the following areas of the EnvelopedData syntax that is defined in
Section 6.7.1 above:

1) The certificates in OriginatorInfo may include domain certificates in type CertificateSet;

2) The rid component in KeyTransRecipientInfo and the originatorCert component in
KeyAgreeRecipientInfo must contain subject key identifiers or certificate hashes rather than the
issuer and serial number specified by a CA;

3) The rid component of RecipientEncryptedKey shall use the certHash choice alternative;

4) The domain certificate extensions may contain subject key identifiers. If not, the extensions are
identified using the certHash choice alternative.

7 Key Management

7.1 General

This section defines mechanisms for conveying a symmetric key (for encryption or the computation of an
authentication code) in a key management information structure. Different keys are generated for encryption
(using EnvelopedData, Section 6.7, Enveloped Data) and authentication (using AuthenticatedData, Section
6.3, Authenticated Data).

7.2 Asymmetric Key Transport

In asymmetric key transport, the RecipientInfo contains an identifier of the recipient’s public key certificate.
This allows the retrieval of the associated private key, and the decryption of the CEK. ANS X9.63 [8] contains
ANSI X9 approved key transport mechanisms (See also X9.44 (draft) [21]).

KeyTransRecipientInfo ::= SEQUENCE {
 version Version,
 rid RecipientIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey
}

KeyEncryptionAlgorithmIdentifier ::=
 AlgorithmIdentifier {{ KeyEncryptionAlgorithms }}

RecipientIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 rKeyId [0] RecipientKeyIdentifier,
 certHash [73] EXPLICIT Hash
}

KeyEncryptionAlgorithms ALGORITHM ::= {
 { OID rsaEncryption PARMS NullParms },

Page 45 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 ... -- expect other key encryption algorithms --
}

EncryptedKey ::= OCTET STRING

The value of version is the schema version number. This value shall be ninety-six for this standard.

7.3 Asymmetric Key Agreement

In key agreement, the sender will derive a symmetric key encryption key (KEK) for each recipient, using the
private key(s) of the sender and the public key of the recipient. The KEK is then used to encrypt the content-
encryption key. Relevant parameters include the KEK algorithm identifier (unless it can be inferred from the key
transport mechanism identifier), an additional ephemeral public key for the sender (for some ANS X9.42 [5] and
ANS X9.63 variants), and a nonce. These may be carried in the ukm component of KeyAgreeRecipientInfo.

KeyAgreeRecipientInfo ::= SEQUENCE {
 version Version,
 originator [0] EXPLICIT OriginatorIdentifierOrKey,
 ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 recipientEncryptedKeys RecipientEncryptedKeys
}

RecipientEncryptedKeys ::= SEQUENCE OF RecipientEncryptedKey

RecipientEncryptedKey ::= SEQUENCE {
 rid RecipientIdentifier,
 encryptedKey EncryptedKey
}

OriginatorIdentifierOrKey ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier,
 originatorKey [1] OriginatorPublicKey,
 certHash [73] EXPLICIT Hash
}

OriginatorPublicKey ::= SEQUENCE {
 algorithm AlgorithmIdentifier {{ ... }},
 publicKey BIT STRING
}
The value of version is the schema version number. This value shall be ninety-six for this standard.

The following ANS X9.42 and ANS X9.63 variants are particularly appropriate for use in this standard:

a) The
sender generates an ephemeral key pair and sends the ephemeral public key to the recipient (in the ukm
component). This key pair must use the same domain parameters as the recipient’s certified key pair. The
content-encryption key is then derived by the sender using the ephemeral key pair and the recipient’s
certified static key pair. The recipient should perform a validation of the originator’s ephemeral public key, as
described in ANS X9.42 and ANS X9.63. This scheme corresponds to the dhOneFlow scheme of ANS
X9.42 and the 1-Pass Diffie-Hellman scheme of ANS X9.63. This variant does not provide data origin
authentication and, therefore, should be used with signed-data and not authenticated-data. This variant
provides forward secrecy.

Page 46 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

b) A key may be derived using certified key pairs for the sender and recipient. This method provides data origin
authentication and can be used with authenticated-data. The key is static for the life of the certificates, in this
case, so exposure of either (sender or recipient) private key will reveal all messages between the sender and
recipient, i.e. this method does not provide forward secrecy. This is an instance of the dhStatic model in
ANS X9.42 and the static Unified Model scheme of ANS X9.63.

c) The mechanism of (b) can be used, but with the addition of a nonce (conveyed in the ukm component) which
is used in deriving the KEK. This generates a different KEK for each message, but forward secrecy is not
provided. This variant uses the dhStatic model of ANS X9.42, and the static Unified Model scheme of ANS
X9.63 and can be used with authenticated-data.

7.4 Pre-established Key Encryption Keys

In pre-established key encrypting keys, the sender encrypts the content-encryption key under a shared KEK
established by other means. No domain parameters are required for this mechanism.

KEKRecipientInfo ::= SEQUENCE {
 version Version,
 kekid KEKIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey
}

KEKIdentifier ::= SEQUENCE {
 kekIdentifier OCTET STRING,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL
}

The value of version is the schema version number. This value shall be ninety-six for this standard.

7.5 External Mechanisms – Constructive Key Management

The Constructive Key Management technique (CKM), described in ANS X9.69, is used to encrypt objects. It may
be used with CMS to encrypt a message (as the object) to a set of users sharing a common set of values (known
as key components). Access to the message content may be controlled by distributing subsets of these key
components to users. The key components used for the encryption of a specific message are chosen by the
sender, and these components define the intended recipients of the message. The sender-chosen components
are combined with a random component to produce an object key to be used as the content-encryption key. CKM
is particularly useful where the data flows among groups of users are well known and predefined.

8 Conformance Classes

The conformance classes for this standard include all of those defined in ANS X9.73. These classes are intended
to simplify the procurement of conforming products, allowing implementations to state the classes to which they
conform, and the algorithms that they support. One additional class is defined in this standard. That is support for
the ASN.1 XML Encoding Rules (XER).

Page 47 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

Annex A
(normative)

XML CMS Object Identifiers

This annex includes object identifiers for content types, attributes, and other objects used in this standard. Many
of these are defined in other documents, but are included here for completeness.

XCMSObjectIdentifers {
 iso(1) identified-organization(3) tc68(133) country(16) x9(840)
 x9Standards(9) x9-96(96) module(0) oids(1) }
 DEFINITIONS EXPLICIT TAGS ::= BEGIN

-- EXPORTS All; --

IMPORTS

 ALGORITHM
 FROM XMLCryptographicMessageSyntax {
 iso(1) identified-organization(3) tc68(133) country(16) x9(840)
 x9Standards(9) x9-96(96) module(0) xcms(2) } ;

OID ::= OBJECT IDENTIFIER -- Alias

-- Content types, from PKCS #7 and S/MIME --

pkcs7 OID ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs7(7)
}

id-data OID ::= { pkcs7 data(1) }

id-signedData OID ::= { pkcs7 signedData(2) }

id-envelopedData OID ::= { pkcs7 envelopedData (3) }

id-digestedData OID ::= { pkcs7 digestedData(5) }

id-encryptedData OID ::= { pkcs7 encryptedData (6) }

pkcs9 OID ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
}

smime OID ::= { pkcs9 smime(16) }

id-ct-authData OID ::= { smime ct(1) 2 }

id-namedkeyencryptedData OID ::= {
 iso(1) member-body(2) us(840) x973(10060)

Page 48 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 attribute(1) namedkeyencryptedData(2)
}

-- Signed attributes, from PKCS #9, S/MIME, and ANS X9.73 --

id-contentType OID ::= { pkcs9 contentType(3) }

id-messageDigest OID ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }

id-signingTime OID ::= { pkcs9 signingTime(5) }

id-contentIdentifier OID ::= {
 smime id-aa(2) contentIdentifier(7)
}

id-msgSequenceNo OID ::= {
 iso(1) member-body(2) us(840) x973(10060)
 attribute(1) msgSequenceNo(1)
}

id-signingCertificate OID ::= {
 smime id-aa(2) signingCertificate(12)
}

id-otherSigningCert OID ::= {
 itu-t(0) identified-organization(4) etsi(0)
 electronic-signature-standard(1733) part1(1) attributes(1) 12
}

id-biometricSyntax OID ::= {
 iso(1) member-body(2) us(840) x973(10060)
 attribute(1) biometricSyntax(2)
}

-- Message component authenticated attribute –-

id-messageComponents OID ::= {
 iso(1) identified-organization(3) tc68(133) country(16) x9(840)
 x9Standards(9) x9-96(96) attributes(1) messageComponents(1)
}

-- Authenticated attribute, from S/MIME --

id-macValue OID ::= {
 smime aa(2) macValue(8)
}

-- Unsigned attribute, from PKCS #9 --

id-countersignature OID ::= {
 pkcs9 counterSignature(6) }

-- CKM key management object identifiers --

Page 49 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

id-ckm-recip-info OID ::= {
 iso member-body(2) us(840) x973(10060) km(2) 1
}

id-ckm-algorithms OID ::= {
 iso member-body(2) us(840) x973(10060) algorithms(3)
}

id-ckm-symmetric OID ::= {
 id-ckm-algorithms symmetric(1)
}

id-ckm-key-transport OID ::= {
 id-ckm-algorithms key-transport(2)
}

id-ckm-key-agree-multiple-encrypt OID ::= {
 id-ckm-algorithms key-agree-multiple-encrypt(3)
}

id-ckm-key-agree-hash OID ::= {
 id-ckm-algorithms key-agree-hash(4)
}

id-other-cert-types OID ::= {
 iso member-body(2) us(840) x973(10060) other-cert-types(4)
}

id-x968-cert-type OID ::= {
 id-other-cert-types x968-domain-cert(1)
}

-- ANS X9.45 object identifiers --

id-signaturePurpose OID ::= {
 iso(1) member-body(2) us(840) x945(10052) signaturePurpose(23) }

-- FIPS 180-1 and FIPS 180-2 Secure Hash Algorithm --

sha-1 OID ::= {
 iso(1) identified-organization(3) oiw(14) secsig(3)
 algorithm(2) 26
}

sha2Algorithm OID ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 csor(3) nistAlgorithm(4) hashAlgs(2)
}

id-sha256 OID ::= { sha2Algorithm sha256(1) }

id-sha384 OID ::= { sha2Algorithm sha384(2) }

Page 50 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

id-sha512 OID ::= { sha2Algorithm sha512(3) }

SHA-Algorithms ALGORITHM ::= {

 -- The parameters associated with id-sha1, id-sha256, id-sha384, --
 -- and id-sha512 should be omitted, but if present, shall have --
 -- a value of ASN.1 type NULL. This is to align with the original --
 -- NIST definitions. For these SHA algorithms, implementations --
 -- shall accept AlgorithmIdentifier values with NULL parameters --
 -- and with the optional parameters component not present. --

 { OID sha-1 PARMS NullParms } |
 { OID id-sha256 PARMS NullParms } |
 { OID id-sha384 PARMS NullParms } |
 { OID id-sha512 PARMS NullParms },

 ... -- Expect additional algorithms --
}

NullParms ::= NULL

-- X9.57 DSA signature generated with SHA-1 hash (DSA X9.30) --

dsa-with-sha1 OID ::= {
 iso(1) member-body(2) us(840) x9-57(10040) x9algorithm(4) 3 }

-- X9.71 HMAC with SHA-1 algorithm --

hmac-with-SHA1 OID ::= {
 iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) 8 1 2 }

-- RSA PKCS #1 signature generated with SHA-1 hash & encryption scheme --

sha1WithRSAEncryption OID ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 5 }

rsaEncryption OID ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 1 }

-

- ANS X9.52 Triple DES Modes of Operation --

des-ede3-cbc OID ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 encryptionAlgorithm(3) 7
}

-- X9.62 ECDSA signature with SHA-1 --

ecdsa-with-SHA1 OID ::= {
 iso(1) member-body(2) us(840) ansi-x962(10045) signatures(4) 1 }

END -- XCMSObjectIdentifiers --

Page 51 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

Page 52 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

Annex B
(normative)

XML CMS Schema

This annex contains an ASN.1 schema for the XML markup representation of the ANS X9.96 XML Cryptographic
Message Syntax. This schema is based on that defined in the ANS X9.73 CMS standard and can be used to
produce identical binary encoded messages as that standard. While ANS X9.73 defines a compact binary
encoding of CMS messages using the Basic Encoding Rules (BER) of ASN.1, this Standard specifies an XML
markup encoding of these same abstract values using the XML Encoding Rules (XER) of ASN.1.

XMLCryptographicMessageSyntax {
 iso(1) identified-organization(3) tc68(133) country(16) x9(840)
 x9Standards(9) x9-96(96) module(0) xcms(2) }
 DEFINITIONS IMPLICIT TAGS ::= BEGIN

-- EXPORTS All; --

IMPORTS

 -- ITU-T Rec. X.509 | ISO/IEC 9594-8 CertificateExtensions --

 PolicyInformation
 FROM CertificateExtensions {
 joint-iso-itu-t ds(5) module(1) certificateExtensions(26) 4 }

 -- ANS X9.84-2003 X9-84-Biometrics --

 BiometricSyntax, NamedKeyEncryptedData
 FROM X9-84-Biometrics {
 iso(1) identified-organization(3) tc68(133)
 country(16) x9(840) x9Standards(9)
 x9-84(84) module(0) biometrics(1) rev(1) }

 -- ANS X9.45 X945-EnhancedManagement --

 SignaturePurposes
 FROM X945-EnhancedManagement {
 iso(1) member-body(2) us(840) x945(10052) modules(0)
 enhanced-management(0) }

 ExtendedKeyMgmtRecipientInfo, IssuerAndSerialNumber,
 SigningCertificate
 FROM X973CryptographicMessageSyntax {
 iso(1) member-body(2) us(840) x973(10060) module(0) 1 }

 -- ANS X9.96 XCMSObjectIdentifiers --

 des-ede3-cbc, dsa-with-sha1, ecdsa-with-SHA1, hmac-with-SHA1,
 id-biometricSyntax, id-contentIdentifier, id-contentType,
 id-countersignature,id-ct-authData, id-data, id-digestedData,

Page 53 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 id-encryptedData, id-envelopedData, id-macValue,
 id-messageDigest, id-msgSequenceNo, id-namedkeyencryptedData,
 id-otherSigningCert, id-signaturePurpose, id-signedData, id-signingCertificate,
 id-signingTime, id-x968-cert-type, NullParms, OID, rsaEncryption, SHA-Algorithms,
 sha1WithRSAEncryption, sha-1

 FROM XCMSObjectIdentifers {
 iso(1) identified-organization(3) tc68(133) country(16)
 x9(840) x9Standards(9) x9-96(96) module(0) oids(1) };

EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType,
 eContent [0] EXPLICIT
 CONTENTS.&Type({Contents}{@eContentType}) OPTIONAL
}

ContentType ::= CONTENTS.&id({Contents})

CONTENTS ::= TYPE-IDENTIFIER -- Defined in ISO/IEC 8824-2, Annex A

Contents CONTENTS ::= {
 { ESignedData IDENTIFIED BY id-signedData } |
 { EEnvelopedData IDENTIFIED BY id-envelopedData } |
 { EAuthenticatedData IDENTIFIED BY id-ct-authData } |
 { EDigestedData IDENTIFIED BY id-digestedData } |
 { EEncryptedData IDENTIFIED BY id-encryptedData } |
 { ENamedKeyEncryptedData IDENTIFIED BY id-namedkeyencryptedData } |
 { EData IDENTIFIED BY id-data },

 ... -- Expect additional objects --
}

ESignedData ::= OCTET STRING (CONTAINING SignedData)

EEnvelopedData ::= OCTET STRING (CONTAINING EnvelopedData)

EAuthenticatedData ::= OCTET STRING (CONTAINING AuthenticatedData)

EDigestedData ::= OCTET STRING (CONTAINING DigestedData)

EEncryptedData ::= OCTET STRING (CONTAINING EncryptedData)

ENamedKeyEncryptedData ::= OCTET STRING (CONTAINING NamedKeyEncryptedData)

EData ::= OCTET STRING (CONTAINING Data)

Data ::= OCTET STRING

SignedData ::= SEQUENCE {
 version Version,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] CertificateSet OPTIONAL,

Page 54 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 crls [1] CertificateRevocationLists OPTIONAL,
 signerInfos SignerInfos
}

DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

DigestAlgorithms ALGORITHM ::= {
 SHA-Algorithms,

 ... -- Expect other digest algorithms --
}

SignerInfos ::= SET OF SignerInfo

SignerInfo ::= SEQUENCE {
 version Version,
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs [0] SignedAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs [1] UnsignedAttributes OPTIONAL
}

SignerIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier,
 certHash [73] EXPLICIT Hash
}

DigestAlgorithmIdentifier ::= AlgorithmIdentifier {{DigestAlgorithms}}

SignatureAlgorithmIdentifier ::= AlgorithmIdentifier {{SignatureAlgorithms}}

SignatureAlgorithms ALGORITHM ::= {
 { OID dsa-with-sha1 PARMS NullParms } |
 { OID ecdsa-with-SHA1 PARMS NullParms } |
 { OID sha1WithRSAEncryption PARMS NullParms },

 ... -- Expect other signature algorithms --
}

SignedAttributes ::= SET SIZE(1..MAX) OF SignedAttribute

SignedAttribute ::= Attribute {{Signed}}

Signed ATTRIBUTE ::={
 { WITH SYNTAX ContentType ID id-contentType } |
 { WITH SYNTAX MessageDigest ID id-messageDigest } |
 { WITH SYNTAX SignaturePurposes ID id-signaturePurpose } |
 { WITH SYNTAX SigningTime ID id-signingTime } |
 { WITH SYNTAX SigningCertificate ID id-signingCertificate } |
 { WITH SYNTAX OtherSigningCertificate ID id-otherSigningCert } |
 { WITH SYNTAX BiometricSyntax ID id-biometricSyntax } |

Page 55 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 { WITH SYNTAX MsgSequenceNo ID id-msgSequenceNo } |
 { WITH SYNTAX Content ID id-contentIdentifier } |
 { WITH SYNTAX MessageComponents ID id-messageComponents },

 ... -- Expect additional objects --
}

MessageDigest ::= OCTET STRING

SigningTime ::= CHOICE {
 utcTime UTCTime,
 generalizedTime GeneralizedTime
}

OtherSigningCertificate ::= SEQUENCE {
 certs OtherCertIDs,
 policies PolicyInfos OPTIONAL
}

OtherCertIDs ::= SEQUENCE OF OtherCertID

OtherCertID ::= SEQUENCE {
 certHash Hash,
 issuerSerial IssuerAndSerialNumber OPTIONAL
}

Hash ::= CHOICE {
 ietf CertHash, -- SHA-1 hash of entire certificate
 withAlgID DigestInfo
}

CertHash ::= OCTET STRING (ENCODED BY sha-1)

PolicyInfos ::= SEQUENCE OF PolicyInformation

DigestInfo ::= SEQUENCE {
 hashAlgorithm DigestAlgorithmIdentifier,
 digest OCTET STRING
}

MsgSequenceNo ::= INTEGER (0..MAX)

Content ::= OCTET STRING

MessageComponents ::= SEQUENCE SIZE(1..MAX) OF Component

Component ::= UTF8String
UnsignedAttributes ::= SET SIZE(1..MAX) OF UnsignedAttribute

UnsignedAttribute ::= Attribute {{Unsigned}}

Countersignature ::= SignerInfo

Unsigned ATTRIBUTE ::= {

Page 56 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 { WITH SYNTAX Countersignature ID id-countersignature } |
 { WITH SYNTAX BiometricSyntax ID id-biometricSyntax },

 ... -- Expect additional objects --
}

Attribute { ATTRIBUTE:IOSet } ::= SEQUENCE {
 type ATTRIBUTE.&id({IOSet}),
 values SET OF ATTRIBUTE.&Type({IOSet}{@type})
}

SignatureValue ::= OCTET STRING

EnvelopedData ::= SEQUENCE {
 version Version,
 originatorInfo [0] OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 encryptedContentInfo EncryptedContentInfo,
 unprotectedAttrs [1] UnprotectedAttributes OPTIONAL
}

UnprotectedAttributes ::= SET SIZE(1..MAX) OF Attribute {{Unprotected}}

Unprotected ATTRIBUTE ::= { ... -- Expect additional objects -- }

OriginatorInfo ::= SEQUENCE {
 certs [0] CertificateSet OPTIONAL,
 crls [1] CertificateRevocationLists OPTIONAL
}

RecipientInfos ::= SET SIZE(1..MAX) OF RecipientInfo

EncryptedContentInfo ::= SEQUENCE {
 contentType ContentType,
 contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
 encryptedContent [0] EncryptedContent OPTIONAL
}

ContentEncryptionAlgorithmIdentifier ::=
 AlgorithmIdentifier {{ContentEncryptionAlgorithms}}

ContentEncryptionAlgorithms ALGORITHM ::= {
 { OID des-ede3-cbc PARMS IV },

 ... -- Expect other content encryption algorithms --
}

IV ::= OCTET STRING (SIZE(8))

EncryptedContent ::= OCTET STRING

RecipientInfo ::= CHOICE {
 ktri KeyTransRecipientInfo,
 kari [1] KeyAgreeRecipientInfo,

Page 57 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 kekri [2] KEKRecipientInfo,
-- Choice [3] reserved for IETF password-based encryption
 ori [4] ExtendedKeyMgmtRecipientInfo
}

EncryptedKey ::= OCTET STRING

KeyTransRecipientInfo ::= SEQUENCE {
 version Version,
 rid RecipientIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey
}

KeyConstructionAlgorithmIdentifier ::=
 AlgorithmIdentifier {{KeyConstructionAlgorithms}}

KeyConstructionAlgorithms ALGORITHM ::= { ... -- Expect additional objects -- }

KeyEncryptionAlgorithmIdentifier ::=
 AlgorithmIdentifier {{KeyEncryptionAlgorithms}}

KeyEncryptionAlgorithms ALGORITHM ::= {
 { OID rsaEncryption PARMS NullParms },

 ... -- expect other key encryption algorithms --
}

OriginatorIdentifierOrKey ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier,
 originatorKey [1] OriginatorPublicKey,
 certHash [73] EXPLICIT Hash
}

OriginatorPublicKey ::= SEQUENCE {
 algorithm AlgorithmIdentifier {{ ... }},
 publicKey BIT STRING
}

KeyAgreeRecipientInfo ::= SEQUENCE {
 version Version,
 originatorCert [0] EXPLICIT OriginatorIdentifierOrKey,
 ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 recipientEncryptedKeys RecipientEncryptedKeys
}

RecipientEncryptedKeys ::= SEQUENCE OF RecipientEncryptedKey

RecipientEncryptedKey ::= SEQUENCE {
 rid RecipientIdentifier,
 encryptedKey EncryptedKey

Page 58 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

}

RecipientIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 rKeyId [0] RecipientKeyIdentifier,
 certHash [73] EXPLICIT Hash
}

RecipientKeyIdentifier ::= SEQUENCE {
 subjectKeyIdentifier SubjectKeyIdentifier,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL
}

SubjectKeyIdentifier ::= OCTET STRING

KEKRecipientInfo ::= SEQUENCE {
 version Version,
 kekid KEKIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey
}

KEKIdentifier ::= SEQUENCE {
 kekIdentifier OCTET STRING,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL
}

DigestedData ::= SEQUENCE {
 version Version,
 digestAlgorithm DigestAlgorithmIdentifier,
 encapContentInfo EncapsulatedContentInfo,
 digest Digest
}

Digest ::= OCTET STRING

EncryptedData ::= SEQUENCE {
 version Version,
 encryptedContentInfo EncryptedContentInfo
}

AuthenticatedData ::= SEQUENCE {
 version Version,
 originatorInfo [0] OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 macAlgorithm
MACAlgorithmIdentifier,
 digestAlgorithm [1] DigestAlgorithmIdentifier OPTIONAL,
 encapContentInfo EncapsulatedContentInfo,
 authenticatedAttributes [2] AuthAttributes OPTIONAL,
 mac MessageAuthenticationCode,
 unauthenticatedAttributes [3] UnauthAttributes OPTIONAL

Page 59 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

}

MACAlgorithmIdentifier ::= AlgorithmIdentifier {{MACAlgorithms}}

MACAlgorithms ALGORITHM ::= {
 { OID hmac-with-SHA1 },

 ... -- expect other MAC or HMAC algorithms --
}

AuthAttributes ::= SET SIZE(1..MAX) OF Attribute {{Authenticated}}

Authenticated ::= Signed

MACValue ::= OCTET STRING

UnauthAttributes ::=
 SET SIZE(1..MAX) OF Attribute {{Unauthenticated}}

Unauthenticated ::= Unsigned

MessageAuthenticationCode ::= OCTET STRING

CertificateRevocationLists ::= OCTET STRING

CertificateSet ::= OCTET STRING

Version ::= INTEGER { vx9-96(96) } (vx9-96, ...)

UserKeyingMaterials ::= SET SIZE(1..MAX) OF UserKeyingMaterial

UserKeyingMaterial ::= OCTET STRING

OtherKeyAttribute ::= AttributeTypeAndValue

AttributeTypeAndValue ::= SEQUENCE {
 type ATTRIBUTE.&id({OtherAttributes}),
 value ATTRIBUTE.&Type({OtherAttributes}{@type})
}

OtherAttributes ATTRIBUTE ::= { ... -- Expect additional objects -- }

-- Supporting definitions --

ATTRIBUTE ::= CLASS {
 &Type OPTIONAL,
 &id OBJECT IDENTIFIER UNIQUE
}
 WITH SYNTAX { [WITH SYNTAX &Type] ID &id }

ALGORITHM ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,
 &Type OPTIONAL
}

Page 60 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

 WITH SYNTAX { OID &id [PARMS &Type] }

AlgorithmIdentifier { ALGORITHM:IOSet } ::= SEQUENCE {
 algorithm ALGORITHM.&id({IOSet}),
 parameters ALGORITHM.&Type({IOSet}{@algorithm}) OPTIONAL
}

END -- XMLCryptographicMessageSyntax --

Page 61 © 2002 ASC X9, Inc. – All rights reserved

X9.96 XML Cryptographic Message Syntax (XCMS)

Bibliography

 [21] ANS X9.44 (draft), Public Key Cryptography for the Financial Services Industry: Key Agreement and Key
Transport Using Factoring-based Cryptography

 [22] ISO 15782-1:2003, Banking - Certificate Management Part 1: Public Key Certificates.

[23] ISO 15782-2:2002, Banking - Certificate Management Part 1: Certificate Extensions.

[24] ISO/IEC 9594-8: Information technology | ITU-T Recommendation X.509, Open Systems Interconnection
-- The Directory: Authentication framework”, International Organization for Standardization, Geneva,
Switzerland, 2000.

Page 62 © 2002 ASC X9, Inc. – All rights reserved

	Scope
	Normative references
	Terms, definitions, symbols and abbreviated terms
	Organization
	Application
	Message Structures
	Encapsulated Content
	Signed Data
	Schema Definition
	Signed Attributes
	Content Type
	Message Digest
	Signature Purpose
	Signing Time
	Signing Certificate
	Other Signing Certificate
	Biometric Object
	Sequence Number
	Content Identifier
	Message Components

	Unsigned Attributes
	Counter Signature
	Biometric Object

	Certificate Formats
	Detached Signatures
	Signature Process
	Ordinary Data
	Authenticated Attributes

	Authenticated Data
	MAC and HMAC Creation
	MAC and HMAC Verification

	Digested Data
	Encrypted Data
	Named Key Encrypted Data
	Enveloped Data
	General
	Certificate Formats

	Key Management
	General
	Asymmetric Key Transport
	Asymmetric Key Agreement
	Pre-established Key Encryption Keys
	External Mechanisms – Constructive Key Management

	Conformance Classes

